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Let K/

e D€ the complete A-uniform r-partite hypergraph with parts of size m. A cycle of

length ¢ in a hypergraph is an alternating sequences of distinct vertices, v;, and distinct edges e; of
the form v, eq,v2, €2, ..., ec, Ve such that {v;, v, } Cep, for 1 <i < candvgq =vy. By
applying the shadows of colored complexes, we neatly settle the problem of partitioning the edges

of K" into cycles of length ¢ where ¢ is a multiple of .
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CHAPTER I: INTRODUCTION

An n-partite graph is a graph where vertices are partitioned into n disjoint sets such that
vertices within the same set are not adjacent. Similarly, an equipartite graph is an n-partite graph
where each disjoint set, or part, has the same number of vertices. The complete n-partite
equipartite graph is denoted by K, Where # is the number of parts, and m represents the
number of vertices in each part. A A-fold graph is a multigraph where A copies of each edge are
created. The A-fold complete graph on n vertices is denoted by AK,,. An complete h-uniform
hypergraph is a hypergraph where each edge contains % vertices, and is denoted by K. Thus,

Kh

axm denotes the complete n-partite, h-uniform equipartite hypergraph with parts of size m,

where n,m, h € N U {0}. We denote the size of the edge set of K%, in two different ways, letting
|E(K! )| = (I”}f])n =m"(}), where [mn] = {1,...,mn}. A cycle of length ¢ in a hypergraph is
an alternating sequences of distinct vertices, v;, and distinct edges ¢; of the form

Vi, e1,V2,€2,...,&: v, such that {v;, vy} C ey forl i< candveyy = v). Finally, to
decompose a graph means to partition the edge set of that graph into subgraphs. Thus, a ¢-cycle
decomposition is the decomposition of a graph into subgraphs that are cycles of length ¢. In this

paper we aim to find a c-cycle decomposition of K% . In order to show this, we must first

nxm'
consider the complete decomposition of the A-fold n-partite graph with parts of size m, denoted
by AK . into cycles of length ¢,
In order to decompose AK ., we will use several results in conjunction. First, in 2014
Bahmanian and Sajna [2] established the following heorem to settle the complete decomposition

of the A-fold complete equipartite multigraph AK . Note that a (¢y,¢2, ..., cp)-cycle

decomposition is a decomposition of a graph into cycles of varying lengths ¢y, ¢z, . . ., cg.

Theorem L.0.1 (Bahmanian, Eajna). {2, Theorem 1.4] Let A,m,n, and ¢y, c3, . . ., cx be positive
integers such that there exisis a (c1,ca, .. ., ¢ )-cycle decomposition of AmK,,. Then the complete

equipartite nudtigraph AK xy admits a (cim, cam, . . ., cpm)-cycle decomposition.

Next, in 2015 Bryant, Horsley, Maenhaut, and Smith [3] established the following theorem

in order to find a c-cycle decompostion of A copies of the complete graph K, this is commonly
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referred to as the A-fold complete graph on n vertices.

Theorem E.0.2 (Bryant, Horsley, Maenhaut, Smith). [3, Theorem 1.1] There is a decomposition
{G1,Ga,....Gr} of AR, in which G is a ci-cycle fori = 1,2, ...,k if and only if the following

conditions hold.

e A{n— 1} is even;

2 <cy,02,...,Cr <R,

eci+cort -+ :/l(g);

e max(ci,cy,...,cx) +k—2 < %(g) when A4 is even, and

® Y < (2=1)(3) when A is odd.

For our purposes we will focus on a corollary of this theorem in which our cycle is of a
fixed length c in a A-fold graph. Though the qualities are very similar, they are in many ways

simpler.

Corollary 1.0.3. Let 2 < ¢ < n, there is a decomposition of AK,, into c-cycles if and only if:
o A(n — 1) is even;

o c|A()

Theorem 1.0.1 and Corollary 1.0.3 provide the basis of our motivation for this paper. We
aim to find the necessary and suflicient conditions for the existence of a decomposition of the
complete n-partite A-uniform hypergraph, Kﬁxm, into c-cycles,

Beyond the results by Bryant et al. and Sajna, in order to create these c-cycle
decompositions, we will be applying the Kruskal-Katona Theorem [6, 5] and a related version by
Frankl et al. [4] referred to as the Colored Kruskal-Katona Theorem. Qur main result relies on the
use of this theorem and follows a similar solution method to Kiihn and Osthus [7], and Bahmanian
and Haghshenas [1].

In order to apply these theorems, we must clarify some notation. For some subset S of
vertices of a graph G, let N (.5) denote the neighborhood of S, or set of all vertices adjacent to any

vertex in §. Let G[X, Y] denote the bipartite graph G with parts X and ¥, Finally, for multipartite
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hypergraph, a legal edge is an edge that contains at most one vertex from each part.

In this paper we prove the following result.

Theorem L0.4. Letn,m, h,c e Nwith2 <c <mn,3<h<n, m|candlet

c

hit
E=mh(}) —c \_m () J Then for L < E(KE ) with |L| = €, K.\ L can be decomposed into

cycles of length ¢ in the following cases:

(A} h=3,n > 85, and L is a matching.
B)4<h<n-3,andn > 23.
COn—-2<h<sn-1,andn = 16.

D)A=nn=3andm > 3.



CHAPTER II: THE KRUSKAIL-KATONA THEOREM

II.1 Tue KrusxkarL-Katona THEOREM

The Kruskal-Katona Theorem is a combinatorial theorem which provides a lower bound
for the size of the shadow of a set. This theorem was independently discovered by a number of
mathematicians, However, it was named for the first two people who discovered it, Joseph
Kruskal, whose findings were published in 1963 [6}], and Gyula O. H. Katona, whose {indings
were published in 1968 [5]. To discuss this theorem in greater detail, let n, # € Z where
0 < h < n,andlet (Iz]) = {s C [n] : |s| = h}, where [n] denotes the set {1,...,n}. Fori ¢ [A],
and for any set S with § C ([Z]), we define the i lower shadow, denoted by 07(S), and the i h
upper shadow, denoted by d;"(S), as follows:

[n]

a7 (S) = {t € (h i

) 1t C s for some s ES},
N [7]
' (S)y=1{te JitCsforsomese Sy,
h+i
Example:

Let S be a set of 3-element subsets of {1, 2, 3,4,5} or [5], where

S={{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5}}.
* The upper shadow by two of S is 95 (S) = {{1,2,3,4,5}}
*» The upper shadow by one of § is af(S) ={{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5}}

* The lower shadow by one of S is

ar($) = {{1,2}, {1,3},{2,3}, {1, 4},{2,4}, {1,5},{2, 5}1. {3, 4}, {3,5}}
* The lower shadow by two of § is 85 (8) = {{1}, {2}, {3}, {4}, {5}}

Though finding shadows in small cases is simple, as the size of § increases and the size of
its subsets grows larger, estimating the size of a shadow becomes more difficult. For any positive

real number s and any integer A with 1 < h <,



s\ s(s=1)...(s=h+])
(h) - h! '

In order to apply the Kruskal-Katona Theorem, we must order subsets, representing our
edges, in specific ways. Given two sets A and B in lexicographical order, we say A < B if the
smallest element between A \ (AN B) and B\ (AN B) isin A. For example, if A = {1, 3,5} and
B ={2,3,4},then A < B in lexicographical order as 1 < 2, since 3 is in the intersection of A and
B, and 1 and 2 are the smallest elements of each set. Similarly, we say that A > B in
colexicographical order if the largest element between A \ (A N B) and B\ (A N B) is in A. Again,
if A={1,3,5} and B = {2,3,4}, then A > B in colexicoraphical order as 5 > 4, since 3 is in the
intersection of A and B and 5 and 4 are the largest elements of each set. Table 1 demonstrates the
differences in these orders on a larger scale, showing the lexicographical order and

colexicographical order of all the 3-element subsets of {1,2,3,4,5}.

Table 1: An example of lexicographical and colexicographical ordering

Lexicographical order Colexicographical order

{1,2,3} {1,2,3}
{1,2,4} {1,2,4)
{1,2,5} {1,3,4}
{1,3,4} {2,3,4}
{1,3,5} {1,2,5}
{1,4,5} {1,3,5)
{2,3,4} {2,3,5}
{2,3,5} {1,4,5)
{2,4,5} {2,4,5}
{3,4,5} {3,4,5}

Notice that in lexicographical order all of the subsets containing 1 are listed first, but in
colexicographical order all of the subsets containing 5 are listed last. This is important as the
Kruskal-Katona Theorem uses such an ordering. Note that given an ordered set A, the initial
segment B is a subset of A andisdefinedasV¥a € A,and ¥V & € B, b < a. For example in Table 1,

an initial segment could be S = {{1, 2,3}, {1,2,4},{1,2,5}} is lexicographical order or



S=1{{1,2,3},{1,2,4},{1,3,4}} in colexicographical order. With this vocabulary defined, below

is the Kruskal-Katona Theorem,

Lemma I1.1.1 (Kruskal-Katona Theorem). [6, 5] Let S C E(K}) with |S] = (]} where s > h,
s € R. Then |0; (S)| is minimized when S is chosen to be the initial segment of all h-element

subsets in colexicographical order.

The Kruskal-Katona Theorem provides us with the concept of how to find the minimum
lower shadow of a set. In our case, this allows us to find the minimum lower shadow for a set of
edges of a hypergraph. Though powerful, this only provides us with a description of how to find
the minimum shadow. It does not give us an approximate lower bound for the size of the first
lower shadow. This limitation led to the creation of the quantitative version of this theorem as

seen below,

Lemma TI1.1.2 (Quantitative Kruskal-Katona Theorem). Let § C E(K") be a collection of

h-subsets of [n), and suppose that the h-binomial representation of |S) is

1= () () )6

JorseRandap > ap.y > -+ >a; 2t 2 1 Then [07(S)] = () + () + + (7).

Expanding on the approximate lower bound of a shadow brought about a more generalized
version of the Kruskal-Katona Theorem for not just the first lower shadow, but instead for the #*

lower shadow. This extension of the Kruskal-Katona Theorem was proven by Lovdsz in 1979 [8].

Lemma IL1.3 (Lovasz’s Theotem). [8] Let S C E(K}) with |S| = () where s > h, s € R, Then

187 ()| = (2 ) fort <t < h

Iach of these theorems are powerful tools and can be applied to a variety of topics,
including our focus of graph theory. Kiihn and Ostus applied them in order to create

approximations for the minimum size of the lower and upper shadow of the graphs they



decomposed info cycles. We will use a similar strategy to their work. However, we will need a

multipartite version of each of these theorems.

II.2 Tar CoLoreD KrusgAL-KATONA THEOREM

In 1988, Frankl, Fiiredi, and Kalai established a colored, or multipartite, generalization of
the Kruskal-Katona Theorem. Note that an n-colored graph is synonymous with a n-partite graph.
The following three theorems were a result of their work. First, is the multipartite version of the

general Kruskal-Katona Theorem.

Lemma IL2.1 (Frankl, Fiiredi, Kalai). [4, Theorem 1.2] IF S ¢ E(K% ), then |67 (S)] is

minimized when S is chosen to be the first m legal edges in lexicographical order.

As seen previously, this theorem works very similarly to the Kruskal-Katona Theorem in
strategically ordering a set and then choosing the first legal edges. The creation of the first upper
and lower shadow of a set §, this time not the initial segment, can be seen in the following example.
Example:

Let S be a set of 3-clement subsets of 2-colored {1,2,3,4,5,6,7,8,9,10} or {10], where
numbers equivalent modulo 5 are part of the same part or color.

Let S ={{1,2,3},{1,2,10},{1,3,5},{2,4,6}}.

e The upper shadow by two of S is 9y (S) = {{1,2,3,4,5},{1,2,3,4,10},{1,2,3,5,9},

{1,2,3,9,10},{1,2,4,8,10},{1,2,8,9,10}, {1,3,4,5,7}, {1,3,5,7,9}, {2, 3,4, 5, 6},

{2,3,4,6,10},{2,4,5,6,8},{2,4,6,8, 10}}

e The upper shadow by one of § is 81‘“(5') ={{1,2,3,4},{1,2,3,5},{1,2,3,9},

{1,2,3,10},{1,2,4,10},{1,2,8,10},{1, 2,9, 10}, {1,3,4,5},{1,3,5,7},{1,3, 5,9},

{2,3,4,6},{2,4,5,6},{2,4,6,8}, {2,4,6,10}}

o The Jower shadow by one of S'is 3, (5) = {{1,2}, {1,3}, {1, 5}, {1, 10}, {2, 3},

{2,4},{2,6},{2, 10}, {3,5}, {4, 6}}

e The lower shadow by two of S is 0, () = {{1}, {2}, {3}, {4}, {5}, {6}{10}}



Note that when listing the first upper shadow, the subsets {1, 2,3, 6}, {1,2, 6, 10},
{1,3,5,6} and {1, 2,4, 6} are not listed as part of the shadow as 6 = T mod 5 and thus they are
not legal edges. Other edges that are similarly disqualified are {1,2,3,7}, {1,2,3, 8},
{1,2,5,10},{1,2,7, 10}, {1,3,5,8}, {1,3,5,10},{2,4,6,7}, and {2,4, 6, 10}. As seen in this
example, approximating a lower bound for the shadow of a colored set is also quite difficult as »
grows. Thus, in the same paper Frankl, Fiiredi, Kalai, also proved a theorem to find an
approximated minimum for the size of the first lower shadow. 'This approximation theorem for

multipartite hypergraphs is listed below.
Theorem I1.2.2 (Frankl, Fiiredi, Kalai). [4] Let S C E(K". ) be a coliection of h-subsets of

[mn], and suppose the h-binomial representation of S is|S] = mh(;;) Jors € R. Then

- 1{ S
167 (8)| 2 m/ 1(h _1)

Finally, Frankl, Fiiredi, and Kalai included a version of the I.évasz Theorem for

multipartite hypergraphs. This approximation will be used directly in proving our main theorem,
Theorem 11.2.3 (Frankl, Firedi, Kalai). [, Theorem 5.1] Suppose S C E (fom) where

S| =m"(}). Thenfor1 <t <handseR

187 ()] > mh-f( hs_ r)

1L3  Our ArrLICATION OF THE KRUSKAL-KATONA THECREM

Using Theorem I1.2.3, we are able (o generate a tool for the manipulation of the upper and

lower shadows of multipartite graphs using only legal edges.



Lemma IL3.1. Letn,mheN,m>1,2<h<nand®+T C E(K" ).
(i) If b > 3 and t € R such that |T| = m"(}), then |8, ,(T)| = m*(%);
(i) If h = 2 and |T| := m*t where | < n — 1, then |83 (T)| 2 m?t (") m? (G)n—t-1);
(fii)lfh=2and p,q e NU{0}, such that p < n,q <n—{p+1), and
IT| = m?[pn — (pgl) +q], then

107 ()] 2 m* (%) + () + -+ () +a(n~p~2)—(9)] = m2[p (") +q(n—p-2)~(9)].

Proof. Using Lemma I1.2.3, one can sce that |8; | > mz(h_(};_z)) =m*(,_},,) =m>(}).
Therefore, (i) holds.

For (ii) we will prove this using construction. Consider |T'], there exist ¢ 2-subsets from the
values {1,...,n}. As this is a multipartite graph, each of those 2-subsets can also be replicated
using the other m elements from the same set. As this replacement can be done with both
elements, the m changes can be done with each of the m other options of the second element and
we have m?t 2-subsets from {1, ..., mn} with tespect to the coloring. Since & = 2, in order to
generate the second upper shadow, we must bolster each of the m?2¢ 2-subsets of 7 into 4-subsets of
numbers {1,. .., mn}. This is done by matching each 2-subset in T with two additional numbers
not used in the edges of T'. In order to achieve the minimum upper shadow, there must be as much
ovetlap in these combinations as possible. Thus, as seen in the first term of this inequality, each of
the t edges will be matched with all 2-subsets combinations of the elements 1 to » that are not in
T. This creates the first part of our upper shadow, but does not include any 4-subset of elements
used by another edge in ¢ with one of the numbers 1 to n — 1. In order to ensure that we are finding
the minimum second upper shadow, we must reuse as many numbers as possible. Therefore the
second term represents all 3-subsets created using clements from the edges in 7. m? (;) represents
this by making all combinations of the ¢ edges in T and an additional number in 7' which is not
used in that particular edges. Then this is multiplied by » — ¢ — 1 to create all combinations of
these 3-subsets with the remaining numbers not in 7. As the base cases use the smallest element
in each part, and then replicate an isomorphic edge with other elements, no illegal edges are

created, but a second upper multipartite shadow is generated minimizing extraneous edges.



Similarly, (iii) generates the first upper shadow when A = 2. That means that each 2-subset
of T needs one additional element. As above, we must find the most efficient way of creating these
3-subsets to minimize the first upper shadow. Thus, let p represent a portion of the numbers 1 to
n—1 and g represent the numbers 1 to n— 1 that are not in p and does not equal p + 1. Considering
the first inequality, the first p terms follow a similar pattern. For example ("] ]) represents
matching 1 with all of the 2-subsets of the values 2 through »n. Then, ("52) represents matching 2
with all of the 2-subsets of the values 3 through » and not 1. This pattern continues until (")
represents p matched with all of the 2-subsets of the values p + 1 through r. In order to minimize
our first upper shadow, as seen in the second inequality, we instead match each number {1, ... p}
with each 2-subset of values p + 1 to n, generated by (*,7). Though this estimation excludes the
2-subsets created between | and p matched with a number p + 1 to #, it does generate a smaller
lower bound. These two approaches generate all of the 3-subsets of the numbers 1 through p,
though they do not represent the 3-subsets that do not use numbers in p. Thus, the commonality
in these two proofs is the last two terms. g(n — p — 2) represents the 3-subsets of p + 1 matched
with a number in ¢ and some value not p + 1 or the number from g. That is carried out for each
value in g, which is why n — p —2 is multiplied by ¢. Finally, () must be subtracted because of
the repetition that occurs among the numbers in ¢ and n — p — 2 as (g] of these 2-subsets will
occur twice with p + 1. By creating as many 3-subsets as possible using elements in p and
reducing the number generated with elements outside of p, we are able to achieve our lower bound
of the size of the first upper shadow while still respecting the multipartite properties of the graph.

1

Remark IL3.2, Note that in Lemma I1.3.1 (iii), since |T| is positive,

2 2

2n—-n—-1 -1
M,»(T)mp(2 )Zo

2 — —

Additionally, note that when # > 85 and p < §, the bound found in Lemma I1.3.1 (iii) can

10



be simplified as follows.

2m’qn

Lemma IL3.3. If p and q are defined as in Lemma IL3.1 (iii), then |87 (T)| = m*p(",F} + =%

Progf. Since g < n— (p+1)and p > 0, we have ¢ > n ~ 2. Additionally, since n > 85, p < 8,
and ¢ < n -2, wehave 10n — 10p —20 — 5¢ 4+ 5 > 4n. Alternative this can be expressed as
n—p-2— % > & When both sides are multiplied by ¢, this implies g(n ~ p —2) — (4} > @

This gives us,

11



CHAPTER III: PROOF OF THE MAIN RESULT

ITII.1  Ser-up AND SUPPLEMENTAL THEOREMS

Using the following lemma we are able to change the problem of decomposing K7, into
c-cycles into a problem where we match the hyperedges to known c-cycle decompositions of

Ky and thusly decompose K*  when a perfect maiching exists. An example of how one such

Inxm
perfect matching is applied is shown in II1.2. This proof follows similarly constructions to those

seen in [7] and [1].

Lemma II1.1.1 (Perfect Matching Lemma). Given an n-colored, h-uniform equipartite
hypergraph with parts of size m, H, and a graph G with V(H)} = V(G), let B[ X,Y] be a bipartite
graph with X := E(H),Y = E(G), such that forx ¢ Xandy € Y, xy isan edge in Bify C x. If
B has a perfect matching, and G can be decomposed into cycles of length ¢, then H can be

decomposed into cycles of length c.

Proof. Note that the vertices in X are h-subsets, and the vertices in Y are 2-subsets. Let M be a
perfect matching in B. Let C be a c-cycle in the graph G. We can then write the cycle C as the
sequence vi, by, vy, by, ..., Ve, by, vy wherei € [c],v; € V,and b; € Y. Yoreachi € [c], let ¢; be
the vertex in X such that ¢;b; € M. By the definition of B, the sequence

VI, €1, V2,€2,. .., Ve, €, V] Tepresents a c-cycle in the hypergraph #. Thus, each edge in the
decomi)ositon of G corresponds (o a cycle of the same length in #. By assumption, M is a perfect
matching and the decomposition of G into cycles covers all of the edges in G exactly once, we

obtain the desired decomposition of H into cycles of length c. o

In order to generate the bipartite graph described above, we will need to use the results
from Corollary 1.0.3 and Theorem 1.0.1 in conjunction for the following theorem and one of its

conscquences.
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Theorem II1.1.2. There exists a AK,xy c-cycle decomposition, if:
o2 < c < mny,
emjc;
o A(n—1) is even;

o ¢ < 4m?(3) when A is even, and ¢ < (A— 1)m?(3) when A is odd

Proof. Let A(n — 1) be even and d | A(}}, thus AK,, admits a d-cycle decomposition by Corollary
1.0.3. Using m-fold AK,, we then know Am(n — 1) is even and d | Am(}). As we are working with
fixed length cycles, the degree of each vertex is even, thus Am(n — 1) will be even. Then, using
Theorem L0.1, if AmK,, has a d-cycle decomposition, then AK,,x,, has a dm-cycle decomposition,
Let dm = ¢, or equivalently, d = =, this provides us with necessary conditions:

smijc |

o < | Am(}), or equivalently, c | Am?(})

o ¢ < $m?(5) when A is even, and ¢ < (A — 1)m?(}) when A is odd.

Thus, if these conditions are met, AK,x,, admits a c-cycle decomposition.

If we let A = 2 then we have an immediate consequence.

Corollary TIL1.3. Let m | ¢, ¢ | m?*n(n — 1) for 2 < ¢ < mn, then 2K xm has a c-cycle

decomposition.

For the remainder of this section, let 2, m, &, ¢ and L satisfy the conditions of Theorem

L.0.4. The following parameters will also be used in support of our proof:

_ [mh(g} — |L]J g m"(}) = |L| — am*n(n - 1)

m?n(n—1) c

/3 can be further simplified using our assumptions from Theorem 1.0.4, ¢|m” ( ) — |L| and

m (U

m?n(n—=1)

am’n(n—1) > mh(Z) — |L| = m*n(n — 1) and Bc < m?n(n — 1) implies B < m — 1. This

¢lm?n(n — 1), thus B is a non-negative integer. Since o > then implies
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implies:
Be <m’n(n-1) —c. (IIL.1)

To prove Theorem 1.0.4, we must combine Lemma III.1.1 with conditions that satisfy
Philip Hall’s Marriage Theorem. Before we can do this, we must clarify some notation. Note that
for graphs A and B, let the union of A and B, denoted by A U B, and the disjoint union of A and B,
denoted by A + B, represent graph with vertex set V(A) U V(B) and edge set E(A) U E(B). 1t
should be noted that A U B can be a multigraph, as the edges are not disjoint, and that for A + B,
V(A) and V(B) are disjoint sets. Finally, note that the disjoint union of graphs A; ... A,, is
denoted by X7 A;.

Sincem | ¢ and ¢ | m?n{n — 1), by Corollary IH.1.3 we know that 2K, has a ¢-cycle
decomposition. Let G| = Z‘,.B: G, where Cy, ... Cg are § arbitrary cycles from a 2K,
decomposition info ¢c-cycles, Similarly, et Gy = 317, (M. U M), where M; is a copy of Ky,
foranyi € {1,...,2a}. By IlL.1, we know that G is well defined. Additionally, since
M1 U My = 2K, for i € {1,...,a} by Corollary TII.1.3, G'» can be decomposed info
c-cycles. Let 7 = K" . \ L and G := G| + G. Note that by the definition of G5, G is a
multigraph which can be decomposed into c-cycles. Additionally, |E(H)| = |E(G)|. Therefore,
let B[X,Y] be the balanced bipartite graph as described in Lemma I1.1.1, where X = E(H) and
Y = E(G),such that forx € X and y € ¥, xy is an edges in B if y € x. By Lemma I11.1.1 in order
to decompose H into c-cycles, it suffices to show that B has a perfect matching. In order to
achieve these, we will rely on the consequences of the Kruskal-Katona Theorem described in
Lemma 11.3.1 and Lemma 11.3.3 to ensure that B satisfies Philip Hall’s condition, Therefore, our
goal is to show that [N(S)| = |§] for any § € X where S # 0.

For ease of notation, we will be using the following parameters in the remainder of our

proof:
o Lets € R, with & < s <n,m > 1 such that [S| = m" ().
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- ,,[;I,S(Iu) i E"’) (“ . Then0 < a < 1.

« b= Lﬂ%%ﬂ where M is a copy of K),x,,. Note that 0 < b < 1.
2

_ m (2) IXem2n(n—1)-c

|X |=mPn{n- 1)+L
mh (1)

mh (")

. Alternatively, 1 — g =
Lemma IiL.1.4. |[N(S)} = a%(|X| —m*n(n—-1)+¢)

Proof. Note that each s € S is an n-colored A-subset of [mn] and N(S) N E(M)) = 8,_,(5). By
Lemma IL.3.1 (i), IN(S) N E(M})| = m*(}). Therefore, since bm? (3} = |N(S) N E(M))],

bm?(3) = m*(3). This 1mp11es

h .
s—h+1 s—i+1) s s—i+1
> hl
ﬁ(n—h+]nn—;+l)(ngn—i+l)
B ﬁs—f+1 ﬁs—i+1
IR RN AL S R

_ (2= kD)
- (st .

nn—1)...(n—h+1)

s§—1+1
e for2 <i<h.

Note: this uses the fact that £ > £=t

lV

.3
n

Therefore, b* > a® implies b > af,

IN(SH = 2a|N(S) N E(M1)]
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Since [N(S) N E(My)| = bm*(}) > m*() and b 2 a*’, which implies:

IN(SH = 2aa%m2(g)

2
= aham?n(n - 1)

By the definition of 8, fc = m"(}) — |L| — @m®n(n - 1). Therefore,

am*(n—1) = m"(}) - |L| - Bc. Since | X| = m"(}) — |L|, we have em?®n(n— 1) = |X| - Bc. Hence:

IN(S)| = aF (JX| - Be) 2 ak (|X| - (m*n(n— 1) - c))

by (11L.1). Therefore,

IN(SY = ah (|X] = mn(n—1) +¢)

m|
Lemma IIL1.5. Ifal-% <1 ~ g, then [N(S)| = |S|.
Proof. By Lemma III.1.4, we have:
IN(S)| = a%(le —m*n(n-1)+c)
Since 1 —g = IX'"’::;’% and al"% < 1 - g, we have:
3
IN(S)[ = a%mk(;:)(] -g) = a%a]“%mh(z) = amh(:;) = |\S|
Therefore, [N(S)| = |S| 0

Lemma IL1.6. Let 8" =Y \ N(S). IFIN(S)| = ||, then IN(S)| = |S].

Proof. Let IN(SY)| = {57].

By the definition of 8/, |§'] = |¥| — [N (S)].
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Thus, [N(S)| = |¥| — |87|. This gives us

INO =Y =S| 2 Y] = IN(S)] = |X] = [N(S")] = |S]
Therefore, it suffices to show that |[N(S")| > || to prove [N(S)| = |S]. O
Now let 87 = 8" N E(M)).

Lemma M11.1.7. If S + 0, then
20 < |8 < Qa+2)|57)

Proof. We have

2a
1$'1= > 18" OV E(M)| +18' 1 E(G1)| = 2187 + 18" 1 E(GY)|

i=1

< 20|89 + 2] = (22 + 2)187].

Note that since this is chosen from a decomposition, this inequality also indicates that each
element in S’ can only appear in at most 2 cycles of G. This shows us additionally that

1] = 324 18" N E(M)| + 18" N E(G)| 2 2e|$)| = 2a. Thus, |§'] > 2a |

Before beginning the general proof, we will now provide a small case example on how this
bipartite graph is generated and a matching is made. In that case, a perfect matching was
generated by hand, but the process of proving the existence of a matching is used instead in this

proof to generalize our findings.

1.2 A SMALL CASE EXAMPLE OF THIS PROOF:

h=4,n=5,m=2,c=4

As seen in Lemma U1.1.1, we must create a balanced bipartite graph. Let there exist a

bipartite graph B[ X, Y] such that X is the set of all 4-edges of the graph K§'><3 and Y is the set of
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copies of 2-edges from 2Kjsx3. Our goal is to decompose Kgx?» into cycles of length 4. First, let X

be the following set:

X ={{1,2,3,4},{1,2,3,5},{1,2,3,9}, {1, 2,3, 10}, {1,2, 4,5},
{1,2,4,8},{1,2,4, 10}, {1,2,5,8), {1,2,5, 9}, {1,2,8,9},
{1,2,8,10},{1,2,9, 10}, {1,3,4,5},{1,3,4,7}, {1,3, 4, 10},
{1,3,5,7},{1,3.5,9}, {1,3,7,9}, {1,3,7,10}, {1, 3,9, 10},
(1,4,5,7},{1,4,5,8}, {1,4,7,8}, {1,4,7, 10}, {1, 4,8, 10},
{1,5,7,8},{1,5,7,9}. {1,5,8,9}, {1,7,8,9},{1,7,8, 10},
(1,7,9,10}, {1,8,9, 10}, {2,3, 4, 5}, {2,3, 4,6}, {2, 3, 4, 10},
{2,3,5,6},{2,3,5,9}, {2, 3,6,9}, {2,3,6,10}, {2, 3,9, 10},
(2,4,5,6},{2,4,5,8},{2,4,6,8},{2,4,6,10}, (2,4, 8, 10},
(2.5,6,8},12,5,6,9}, {2, 5,8,9}, {2,6,8,9}, {2, 6,8, 10},
{2,6,9,10},{2,8,9, 10}, {3,4,5,6}, {3,4,5,7},{3.4,6,7},
(3,4,6,10},{3,4,7,10}, {3,5,6,7},{3,5,6,9}, {3,5,7,9},
{3,6,7,9},{3.6,7,10}, {3,6,9, 10}, {3,7,9, 10}, {4,5, 6,7},
{4,5,6,8},{4,5,7,8}, {4,6,7,8}, {4,6,7, 10}, {4, 6,8, 10},
{4,7,8,10},{5,6,7,8}, {5,6,7,9}, {5,6.8,9}, {5,7.8,9},

{6,7,8,9},{6,7,8, 10}, {6,7,9, 10}, {6,8,9, 10}, {7,8,9, 10}}

Similarly let Y = E(2K,x») where each vertex is a 2-edge of the graph. As suchlet ¥ be

the following set:
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V={{1,2}, {12}, {1, 3}, {1,3}, {1, 4}, {1, 4}, {1, 5}, {1, 5},
{1,7}, 41,7}, (1,8}, {1,8}, {1,9}, {1,9}, {1, 10}, {1, 10},
{2,3},{2,3},{2,4}, {2, 4}, {2, 5}, {2,5}, {2, 6}, {2, 6},
{2,8},{2,8},{(2,9}. 42,9}, {2, 10}, {2, 10}, {3, 4}, {3,4},
{3,5},43,5},{3,6}, 3,6}, {3,7}.{3,7}. {3,9}, {3,9},
{3,10}, {3, 10}, {4,5},{4,5},{4,6}, {4,6},{4,7}, {4, 7},
{4,8},{4,8}, {4, 10}, (4,10}, {5,6}, {5, 6}, {5, 7}, {5.7},
{5,8},{5,8},{5,9}. {5, 9}, {6,7}. {6, 7}. {6. 8}, {6, 8},
{6,9},{6,9},{6, 10}, {6, 10}, {7,8},{7.8},{7,9}, {79},

{7,10}, {7, 10}, {8, 9}, {8, 9}, {8, 10}, {8, 10}, {9, 10}, {9, 10} }

Note that since this K53 is 2-fold, each edge in Ksx3 occurs twice. It can be seen that

|X] = 2* (Z) = 80 and |¥| = 2(5)}(5 — 1) = 80, Therefore with one copy of 2Ksy3 C ¥ we have that
[X| = |Y|. Since this is true, B[ X, Y] is a balanced bipartite graph. Thus, if ¥ can be decomposed
into 4-cycles, we will be able to find a perfect matching in B[ X, Y]. Below is a complete
decomposition of ¥ into 4-cycles, which means that all 80 edges can be partitioned into 4-cycles,
It should be noted that our cycles take the form vy, e, v2,€2,...,¢€._1, Ve, €, V|, Where

vi, V1 C erand vy = 1.
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1,{1,2},2,{2,6},6,{6,7},7,{7,1},1;
1,{1,2},2,{2,6},6,{6,7},7,{7, 1}, 1;
2,{2,3},3,{3,7},7,{7. 8}, 8, {8,2},2;
2,{2,3},3.{3,7}.7,{7,8},8,{8,2},2;
3,{3,4},4,{4,8},8,{8,9},9,{9,3},3;
3,{3,4},4,{4,8},8,{8,9},9,{9,3},3;
4,{4,5},5,{5,9},9, (9,10}, 10, {10,4}, 4;
4,{4,5},5,{5,9},9,{9,10}, 10, {10,4}, 4;
5,{5,1},1,{1,10},10,{10,6}, 6, {6, 5}, 5;
5,{5,1},1,{1,10}, 10, {10, 6}, 6, {6, 5}, 5;
1,{1,3},3,{3,6},6,{6,8},8,{8,1}, 1;
1,{1,3},3,{3,6},6,{6,8},8,{8,1}, 1;
2,{2,4},4,{4,7},7,{7.9},9,{9,2},2;
2,{2,4},4,{4,7},7,{7,9},9, {9,2},2;
3,{3,5},5,{5,8},8,{8,10},10, {10, 3}, 3;
3,{3,5}.5,{5,8}.8,{8, 10}, 10, {10, 3}, 3;
4,{4,1},1,{1,9},9,{9,6},6,{6,4},4;
4,{4,1},1,{1,9},9,{9,6},6, {6,4},4;
5.{5,2},2,{2,10},10,{10,7},7.{7.5}.5;

5,{5,2},2,{2, 10}, 10, {10,7},7, {7, 5}, 5.

Thus, there exists a complete decomposition of 2K5y3 into 4-cycles. Since |X| = |Y| and there
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exists a complete decomposition of ¥ into 4-cycles, there can be a perfect matching in B[ X, Y].
Note that edges in B are defined as xy for x € X and y € ¥ such that y C x. For example, there is
an edge between {1,2} and {1,2,3,4} as {1,2} ¢ {1,2,3,4}. Table 2 shows a perfect matching
of B[X,Y]. In a general case, we would need to find the upper or lower shadow to find this perfect
matching. Consider the fact that {1, 2} is part of the A — 2 lower shadow of {1,2,3,4}, and
{1,2,3,4} is part of the second upper shadow of {1, 2}. Thus, those shadows and the Colored
Kruskal-Katona Theorem help us create approximations for the neighborhood of a set §.

From this perfect matching we are able to take our 4-cycles from ¥ and map a hyperedge

from X to overlay each of the simple edges. For example, the cycle
1,{1,2},2,{2,6},6,{6,7},7,{7, 1},1
can have each edge expanded into
1,{1,3,4,2},2,{2,3,5,6},6,{6,8,9,7},7,{7.3,5, 1}, 1

using the matching in Table A-1. Note that the order in which the elements appear in these sets
does not matter, as such {1, 2, 3,4} is the same edge as {4, 1,3, 2} as both subsets contain the
same elements. The mapping process 1s repeated for all 20 cycles, and this results in the complete

decomposition of K§x2 into 4-cycles. This decomposition listed below.

1,{1,3,4,2},2,{2,3,5,6},6,{6,8,9,7},7,{7,3,5, 1}, 1;
1,{1,3,5,2},2,{2,3,4,6},6,{6,8,10,7},7,{7,3,9, 1}, 1;
2,{2,1,9,3},3,{3,1,10,7},7,{7,1,4,8},8,{8,4,5,2}, 2;
2,{2,4,10,3},3,{3,4,5,7},7,{7,9,10,8},8,{8,1, 5,2}, 2;
3,{3,5,6,4},4,{4,.1,2,8},8,{8,2,10,9},9, {9,5,7,3}, 3;
3,{3,6,7,4},4,{4,6,10,8},8,{8,1,7,9},9,{9,6,7,3}, 3;

4,{4,7,8,5},5,{5,1,7,9},9,{9, 1, 3,10}, 10, {10, 1, 8,4}, 4;
4,{4,6,8,5},5,{5,1,8,9},9,{9,1,3,10}, 10, {10,1, 7,4}, 4;
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5.{5,2,4,1},1,{1,2,3,10}, 10,{10,2,9, 6},6,{6,7,8,5},5;
5,{5,3,9,1},1,{1,2,4, 10}, 10, {10,2,9, 6},6,{6,7,9,5}, 5;
1,{1,4,5,3},3, {3,2,10,6},6, {6,9, 10,8}, 8, {8,4,5, 1}, 1;
1,{1,4,7,3},3, {3.2,9,6},6,{6,2,10,8},8,{8,2,10, 1}, 1;
2,{2,3,5,4}, 4, {4,6,10,7},7,{7,3,10,9},9, {9, 3,5, 2}, 2;
2,{2,6,8,4},4,{4,6,10,7},7,{7,1,10,9},9, {9,5,6, 2}, 2;
3,{3,6,7,5},5,{5,6,9,8},8,{8, 1,9, 10}, 10, {10, 4, 6,3}, 3;
3,{3,6,9,5}.5,{5,2,9.8},8,{8,1,7, 10}, 10, {10,2,9, 3}, 3;
4,{4,3,10,1}, 1,{1,2,5,9},9,{9,2, 8,6}, 6,6, 5, 7,4}, 4;
4,{4,5,7,1},1,{1,2,8,9},9,{9,3, 10,6}, 6, {6,7, 8,4}, 4;
5,{5,4,6,2},2,{2,4,8, 10}, 10,{10,3,4,7},7,{7,8,9, 5}, 5;
5,{5,6,8,2},2,{2,4,6,10},10,{10,3,6,7},7, {7, 1, 8,5}, 5.

1.3 Proor or TaeoREM 1.00.4.

Case A. 4 =3,n > 85, and L is a matching.

Case A.1. |S| < |X| - 3m?n(n—1) +c.

Proof. Since |L| = m3(}) — |X| we have:

m?(5) = | X| +mPn(n—1) —c Ll +m*a(n—-1)—c

() W

Since |1.| < ¢ < mn and n > 85, we have:

2 —_—
< menin—1) _ 6 <3
m3n(n—61)(n—-‘2) m(n — 2)

By Lemma TIL1.5 we have a'~3 = a3 < 1 — g. Therefore, it suflices to show thata < (I — g)°.
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We have:

am3(2) =|8] < |X|~3m’n(n-1) +¢

= |X| - 2¢ = 3[m%n(n - 1) - c]
Since |L| < ¢ < mn,

1S} < |X| - 2|L] - 3[m*n(n ~1) — ] = |X| - z[nﬁ(’;) —1X[] = 3[m*n(n - 1) -]
= 3|X| —2m3(§) —3m2n(n - 1) +3c = 3(|X| - m®n(n — 1) +¢) — 2m° (z)

=3(1 —g)m-*(’;) - 2m3(§) = m3(;‘) 3(1-g) 2]

=m3(2)(1 - 3g)

Since g < 3, we have:

m3(§)(1 ~3g) < (1—g)3m3 (;’)

Since am (3} < (1 —g)®m?(%), this implies @ < (1 — g)*. Therefore by Lemma I11.1.5,
|N(S)| = |S|. Therefore by Lemma I11.1.1,  can be decomposed into c-cycles.
Case A.2. |S| > [X| - 3m?n(n—1) +c.
As stated in Lemma II1.1.6, to show |N(S)} > |S| it suffices to show |N(S")| = [$/]. From

the assumed statement of Case A.2. we have,

IS] > |Xi=3m*n(n—1)+c
18| — |X| > -3m*n(n - 1) +¢

|XI— 18] < 3m*n(n—1) —c < 3m*n(n 1)
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IN(SH| < |1X| ~ 8] < 3m®n(n - 1) (IM0.2)

Let p,g e NU {0}, suchthat p < n,g <n— (p+1),and 8| = m*(pn — [”;’l) +g). For

our purposes, 1t should be noted that | | indicates a 2-edge of [mn] and N(S) = 87 (S} \ L.

Using this definition in conjunction with Lemma 11.3.1 (iii), we have
4 ’ n—
NI 31101 2 (o7 0t - p -2 = (3)) -

Sinceg<n-—-(p+1),wehave g(n—p —2) - (g) = 0.
If p =9, then since L is a matching, |N($")| = 9m2( 59) - % > 3m?n(n — 1) when
n > 85. This contradicts (TTI1.2) that |N(S’)| < 3mZn(n — 1). Alternatively, if p > 9, then by

Lemma I1.3.1 (iii),

e L e Y e /R
)

2m2((n_1
-9

211129(n2 )—11—%-«
1

> 3m%n{n — 1)

This is also a contradiction of the condition that [N (S"}| < 3m?a(n — 1). Thus, p < 8. Let
L(S)) = LN N(S)). Since L is a maiching in the assumptions of Case A, |L(8])] < |5]|. Assume

that p = 0. Then, |S{| = g and |L(S])}| < g. By these assumptions and since # > 85, by Lemma
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1.3.3 we have,

2
N = Vs = 220
2m?qn
> - |L(s))
2m’qn 2m’n
= —g = —_
z— q q( 5 1)

>c%1
_js

3 3

(P2 ) gy (M)

Note that since A = 3,

A

m3 (1) - |L|J ) |%m3n(n ~D(n-2)—|L]

_mzn(n -1 min{n-1)
%m%(n - D{n~2)
m?n(n—1) ‘
m(n —2)
6

Therefore, 2a < w using (II1.3) and IL.emma I1.1.7, we have

W)l 2157 (25 42

> 1871(2a +2) = |§).

Thus, we have p € [§].
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By Lemma I1.3.3 we have

_ 3
V)= sl 2 (" )+ 2R sy

5
. 4m?p (n +2m3qn m?n
-5 12 5 3
: 2nign _ 12mPgn 11m2y (n=2)
Since,~=— = “55— = —q5 -5 - because n — 2 < n and

4m’p (n) _ m_z . 4m*pn(n—1) — 4m%pn _ 4m>pn(n —2)
T2 -

5 \2 10 10
3 12m*pnln — 2) 3 12m%p n(n - 2)
- 30 "0 3
11m?pn(n —2)
- 10 3 7

we have,

4 2 2 3 2
N )| = mp(n)+ m>qn _ m'n

5 \2 5 3
2 _ 2

S 11pm= n(n —2) N 2m“gn
10 3 5

- 11pm? n(n — 2) N m?gn—2
10 3 10 3
11m? (n -2)

=gy (Pt ).

Moreover, n > 85 > 62 implies %% > % + 2. Therefore,

, n—2 , ,ofn=2 ,
|N(S)|2m2(—§—+2)|81|2|81|( 3 +2).2|S[.

Hence, [N(S)| = |S§’} and Hall’s condition is satisfied.
CaseB.4 <h<n-3andn > 23.

CaseB.1. |S| < |X| - 2m?’n(n— 1) +c.
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By Lemma ITI.1.5 it is enough to show that a < (1 —~ g)2. Since |L| < ¢ < mn,

amh(z) =S| < X = 2m®a(n — 1) + ¢ = |X] — ¢ ~2[m’n(n— 1) — c]

< X - Imk(:) - |X|] —2m*n(n—-1)-¢]=(1 - Zg)mh(n)

h

< (1= V2" .

< (1—-g)m (h)
Therefore, a < (1 — g)2 and by Lemma TI1.1.5, Hall’s condition is satisfied.

Case B.2. |S| > |X| - 2m?n(n - 1) +¢

CaseB.2.14 =4

By Lemma ITI.1.6 it is enough to show that |N(S"}| = |S’|. We have
IN(SD] < |X] = |S] < 2m?n(n — 1) — ¢ < 2m®n(n - 1). (11.4)

Note that each element of §| is an n-colored 2-subset of [mn] and N(S|) = 8;(S)) \ L.
Alternatively, this can be expressed as |65 (S7)| = |[N(SD| + |L]. If |S]| = 7, then by Lemma I1.3.1
(i) we have [N (S7)| = 7m2(”;8) +21m?(n —8) — [L]. Since n = 23 and |L.| < ¢ < mn, we have
71712[”58) +21m*(n —8) — |L| = Tm? (”Z"#) +20m%n — 168m? = 2m2n(n — 1). However, this
contradicts (If1.4). Similarly, if [5}] > 7 then
IN(SD| > Tm>("3%) + 21m*(n — 8) — |L| = 2m®n(n — 1), contradicting (II1.4) again. Therefore,
871 < 6.

Then by Lemma I1.3.1 (i) we have,

L n—187] -1 N )
|N(S’,)|2m2|S||( '21| )+m2( Qll)(n—|sl|—1)—|L|

L fr—=157 -1
= wisyl(" T

-7
> m2|S’1|(n 5 ) -~ MR
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Since |§]| < 6 and [L| < ¢ < mn. Thus by Lemma IIL1.7,

(")

Ay / > 21t _
IN(SH = IN(SD| = m |S|(—20+2) mn

Since h =4, @ = \_MJ,

ma(n-1)

. [ﬁm‘*n(n ~D(n-2)(n-3) - |L|

mZn(n—1)
ML R M. |
a 24 m2n(n—1)
< m?*(n—2)(n-73) _ |L| < m*(n—2)(n - 3)
- 24 m2n(n—1) 24 '

Therefore, 2a < 5’12(""—122)(""1) Then for n > 23 > 12, this gives us

(")

A 2yq _
IN(S")| = m*|S| (w——za +2) mn

2
)-8
> ]S'Im (rn—"{n-8) _ 12 —mn
2 m2(n—2}{(n-3) +24
. 6(n~T7)(n-28)
= |5 mn

(n—2)(n—-3)+24

> 2|8 — mn.

Note that the following consideration of @ can also be made,

o m?(n — 2)(n —3) 3 (L]
24 m?n{n — 1)
mAn-2n=3) I
24 m2n{n —1)
S m*(n—2)(n—3) _9
> 7 :
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m?(n=2)(n-3)
12

Therefore, 2¢ > —4 as well. Since n > 23, we have 2a > mn, so by Lemma

ML.1.7 |S] > mn. Therefore, we have,

IN(S")| = 2|8 —mn

> 2|8 - 18t = |5

Thus, |N(S")| > |5, indicating that Hall’s condition is satisfied.
Case B225<h<n-3

It should be noted that for # > 5 and |L| < ¢ < mn, for any y € ¥ we have

afn =2
1N@nznﬁ2u_2)4L

nh=2 n—2\n-5 n-6 n-—h+l
3 fh=2 h-3""" 4

v

—mn

Since A < n — 3, we also know that n > A + 3, Thus we have the following:

—-2\n—-5 n-=6 n—h+1
NG > mi2" : -
R I e
) -
_mh"z(ns )—mn>n12(n32) M

Then since n > 23, we have the following:

-2
IN(v)| = mz(n 3 ) —mn
> 2m?n(n - 1)

> 2min(n—1) —¢

Note that this shows that y has more than 2m?n(n — 1) — ¢ neighbors. Therefore, since
15| > |X| — (2m*n(n — 1) — ¢), then every y € ¥ has a neighbor in S. Hence, N(S) = ¥. Thus,
|IN(8)] = |§] and Hall’s condition is satisfied.

29



CaseC.n—-2<h<n-l,andn > 16.
Case C.1. m = |

Since m = 1, these results follow exactly from work completed by Bahmanian and
Haghshenas [1]. When h=n ~2c ¢ {n - 1,n}, and n > 16, then there exists a c-cycle
decomposition of K%, \ L. Additionally, when 4 =n ~ 1 and ¢ = n, K7" is itself an n-cycle so

there exists a c-cycle decomposition of K%\ L.

Xl

CaseC2. m>2
Case C.2.1. |S| < |X| —m2n(n— 1) +c.

By Lemma IIL.1.5 it is enough to show that a < (1 — g)ﬁ. Since |L| < ¢,

am'” (’;) =18 < |X|-mPa(n—1) +c

< (1 —g)mh(;i).

Since ﬁi_“—% >1fornz=16>35,

vt

< (1 —g)::_jmh(Z).

Therefore, a < (1 — g)ﬁ“:“% and by Lemma H1.1.5, Hall’s condition is satisfied.
Case C.2.2. |S| > |X| —m’n(n—1) +¢
By Lemma I11.1.6 it is enough to show that |[N(5"}| > |8’|. Forany y € ¥, we have

NOI = (1) - 10
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Since |L| < ¢,2<h <n-1,n2 5, and m > 2 we have the following:

WO =iy e
>m?n(n-1)-c

Note that this shows that y has more than m?n(n — 1) — ¢ neighbors. Therefore, since

S| > |X| — (m?n(n — 1) — c), then every y € ¥ has a neighbor in S. Hence, N(S) = Y. Thus

3

IN(S)| = |§] and Hall’s condition is satisfied.
CaseD.h=nn=3 andm = 3.
Case D.1. |S| < |X| - m?n(n—1) +c.

By Lemma II1.1.5 it is enough to show that & < (1 — g)a-2. Since |L| < ¢,

amh(n) =S| < |X|—mPn(n—1) +¢

h
<{l- g)m”(’;).

Since ﬁi > 1forn >3,

amh(:) <1 -g)mh(:)

< (] — ””Thn‘
< (1-g)mim (h)

Therefore, ¢ < (1 — g)#= and by Lemma IIL 1.5, Hall’s condition is satisfied.
Case D.2. |S| > (X| -mPn(n - D +¢

By Lemma I11.1.6 it is enough to show that {N(5’)} = |$’|. For any y € ¥, we have

KO > m ) - i
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Since |L| < ¢,2 <h <n,n 23, and m > 3 we have the following:

NG| = m (’;) —c

>min{n-1)-c

Note that this shows that y has more than m?n(n — 1) — ¢ neighbors. Therefore, since
S| > |X| = (m*n(n — 1) — ¢), then every y € ¥ has a neighbor in . Hence, N(S) = Y. Thus,
[N(S)| > |S| and Hall’s condition is satisfied.
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Table 2: A perfect matching of B[ X, Y]

xeX velY |xeX yevy
{1,2,3,4} {1,2} | {3,4,6,10} {3,10}
{1,2,3,5} {1,2} ]1{2,3,9,10} {3,10}
{1,3,4,5} {1,3} | {4,5,7,8} {4,5}
{1,3,4,7} {1,3} | {4,5,7,8} {4,5}
{1,3,4,10} {1,4} | {4,5,6,7} {4, 6}
{1,4,5,7} {1,4} | {4,6,7,8} {4, 6}
{1,3,5,9} {1,5} | {4,6,7,10} {4,7}
{1,2,4,5} {1,5} |{4,7,8,10} {4,7}
{1,3,5,7} {1,7} 1{1,2,4,8} {4, 8}
{1,3,7,9} {1,7} | {4,6,8,10} {4, 8}
{1,4,5,8} {1,8} | {1,4,8,10} {4,10}
{1,2,8,10} {1,8} | {1,4,7,10} {4,10}
{1,2,5,9} {1,9} | {5,6,7,8} {5, 6}
{1,2,8,9} {1,9} | {5,6,7,9} {5, 6}
{1,2,3,10} {1,10} | {5,7,8,9} {5,7}
{1,2,4,10) {1,10} | {1,5,7,8} {5,7}
{1,2,3,9} 12,3} 1 {5,6,8,9} {5, 8}
{2,3,4,10}y {2,3} | {2,5,8,9} {5, 8}
{2,3,4,5} {2,4} | {1,5,7,9} {5,9}
{2,4,6,8} {2,4} | {1,5,8,9} {5,9}
{2,4,5,6} {2,5} | {6,7,8,9} {6,7}
{2,5,6,8} {2,5} | {6,7,8,10} {6,7}
{2,3,5,6} {2,6} | {6,8,9,10} {6,8}
{2,3,4,6} {2,6} | {2,6,8,10} {6,8}
{2,4,5,8} {2,8} | {2,6,8,9} {6,9}
{1,2,5,8} {2,8} | {3,6,9,10} {6,9}
{2,3,5,9} {2,9} | {2,6,9,10} {6,10}
{2,5,6,9} {2,9} | {6,7,9,10} {6,10}
{2,4,8,10} {2,10} | {1,4,7,8}  {7.8}
{2,4,6,10} {2,10} | {7,8,9,10} {7,8}
{3,4,5,6} {3.4} | {3,7,9,10} {7,9}
{3,4,6,7} {3.4} | {1,7,9,10} {7,9}
{3,5,6,7} {3,5} | {3,4,7,10} {7,10}
{3,5,6,9} {3,5} | {3,6,7,10} {7,10}
{2,3,6,10} {3,6} | {2,8,9,10} {8,9}
{2,3,6,9} {3,6} |{1,7,8,9} {8,9}
{1,3,7,10} {3,7} |{1,8,9,10} {8, 10}
{3,4,5,7} {3,7} | {1,7,8,10} {8,10}
{3,5,7,9} {3,9} 14{1,2,9,10} {9, 10}
{3,6,7,9} {3,9} 1 {1,3,9,10} {9,10}
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