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One of the most critical components of modern cryptography and thus cybersecurity is 

the ability to factor large integers quickly and efficiently. RSA encryption, one of the most used 

types, is based largely on the assumption that factoring for large numbers is computationally 

infeasible for humans and computers alike. However, with quantum computers, people can use 

an algorithm like Shor’s algorithm to perform the same task exponentially faster than any normal 

device ever could. This investigation will go into the strength and vulnerability of RSA 

encryption using the power of factorization in an age of quantum computers. 

We start by looking at the foundations of both classical and quantum factoring with 

greater detail at number field sieve (NFS) and Shor’s. We examine the mathematical background 

of each topic and the associated algorithms. We conclude with theoretical analysis and 

experimental simulations that address the difficulty and implications of the above-mentioned 

algorithms in cryptography. 

The final thing that I will be discussing is where quantum computing is at present and 

how this could pose a threat to the current type of cryptographic systems, we use every day. I 

will be mentioning how we need post-quantum cryptography and how people are currently 

creating algorithms that are designed to be attack-resistant even to large-scale quantum 

computers. 



This investigation has shown the changing dynamics of cybersecurity in the quantum era 

and helps us understand the challenges and the need to innovate the current cryptographic 

systems. 

KEYWORDS: factorization; cybersecurity; quantum computing; Shor's algorithm; Number Field 

Sieve; post-quantum cryptography. 
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CHAPTER I: INTRODUCTION 

1.1 Background Information 

1.1.1 The Role of Factorization in Cybersecurity 

Factorization, the process of breaking down a composite number into its prime factors, 

plays a crucial role in modern cryptography (Bressoud, 2012). Many widely used cryptographic 

systems, such as RSA (Rivest-Shamir-Adleman), rely on the difficulty of factoring large 

numbers (Rivest et al., 1978). The security of these systems is based on the assumption that 

factoring large numbers is computationally infeasible for classical computers (Crandall & 

Pomerance, 2005). 

The RSA cryptosystem, for example, uses a public key (n, e) and a private key (n, d), 

where n is the product of two large prime numbers (p and q), and e and d are chosen such that: 

 

𝑒 ∗  𝑑 ≡  1 (𝑚𝑜𝑑 (𝑝 −  1)(𝑞 −  1)) 

 

Where, 

• 𝑒: Public key exponent 

• 𝑑: Private key exponent 

• 𝑝, 𝑞: Large prime numbers 

• (𝑝 −  1)(𝑞 −  1): Euler's totient function for the product of 𝑝 and 𝑞 

The security of RSA relies on the difficulty of factoring n into its prime factors p and q. If 

an attacker can efficiently factor n, they can calculate the private key d and decrypt any message 

encrypted with the corresponding public key. 



2 

1.1.2 Introduction to Quantum Computing 

Quantum computing is a rapidly evolving field that harnesses the principles of quantum 

mechanics to perform computations (M. A. Nielsen & Chuang, 2010). Unlike classical 

computers, which use bits (0 or 1) to represent information, quantum computers use quantum 

bits, or qubits (Kanamori & Yoo, 2020). Qubits can exist in a superposition of states, allowing 

quantum computers to perform certain computations exponentially faster than classical 

computers (Montanaro, 2016). 

A qubit can be represented as a linear combination of two basis states, |0⟩ and |1⟩: 

 

|𝜓⟩  =  𝛼|0⟩  +  𝛽|1⟩ 

 

where α and β are complex numbers satisfying |α|^2 + |β|^2 = 1. 

Quantum computers can perform operations on qubits using quantum gates, such as the 

Hadamard gate (H), which creates a superposition of states: 

 

𝐻|0⟩  =  (|0⟩  +  |1⟩) / √2 

𝐻|1⟩  =  (|0⟩  −  |1⟩) / √2 

 

The ability of quantum computers to exploit superposition and entanglement enables 

them to solve certain problems, such as factorization, much more efficiently than classical 

computers. 
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1.2 Problem Statement 

The advent of quantum computing poses a significant threat to the security of modern 

cryptographic systems that rely on the difficulty of factoring large numbers (Boudot et al., n.d.; 

Shor, n.d.). Shor's algorithm, a quantum algorithm for integer factorization, can factor large 

numbers exponentially faster than the best-known classical algorithms (Shor, n.d.). This means 

that if large-scale quantum computers become available, they could break the security of widely 

used cryptographic systems like RSA (Bernstein et al., 2017). 

1.3 Research Objectives 

The main objectives of this research are: 

• To explore the theoretical foundations and practical implications of Shor's algorithm for 

integer factorization. 

• To compare the performance of Shor's algorithm with classical factorization algorithms, 

such as the Number Field Sieve (NFS). 

• To investigate the potential impact of quantum computing on the security of modern 

cryptographic systems and discuss the need for quantum-resistant cryptography. 

1.4 Thesis Structure 

The thesis is organized into six chapters. Chapter 1 provides background information, 

states the problem, and outlines the research objectives. Chapter 2 reviews the relevant literature 

on factorization, quantum computing, and their implications for cryptography. Chapter 3 

discusses the theoretical framework, focusing on classical and quantum factorization algorithms. 

Chapter 4 presents the experimental study, including simulations of Shor's algorithm and 

comparisons with classical factorization techniques. Chapter 5 discusses the implications of the 
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findings for cryptography and the future of cybersecurity in a quantum world. Finally, Chapter 6 

summarizes the key findings, contributions, and future research directions.  
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CHAPTER II: LITERATURE REVIEW 

2.1 Traditional Factorization Techniques and Their Limitations 

Factorization, the process of finding the prime factors of a composite number, is a 

fundamental problem in number theory and cryptography. Classical factorization algorithms, 

such as trial division, Pollard's rho algorithm, and the quadratic sieve, have been extensively 

studied and improved over the years (Bressoud, 2012; Pomerance, n.d.). 

The most efficient classical factorization algorithm for large numbers is the Number Field 

Sieve (NFS), which has a sub-exponential running time complexity (Buhler et al., 1993a) of: 

 

𝑒𝑥𝑝((1.923 +  𝑜(1))(𝑙𝑜𝑔 𝑛)^(1/3)(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)^(2/3)) 

 

where n is the number to be factored. 

Despite the efficiency of NFS, factoring large numbers (e.g., those used in RSA keys) remains a 

computationally intensive task for classical computers. The security of many cryptographic 

systems relies on the assumption that factoring large numbers is practically infeasible (Kleinjung 

et al., 2010). 

2.1.1 Mathematical Foundations of Factorization 

The mathematical principles underlying factorization, including prime numbers, 

factorization algorithms, modular arithmetic, and hardness assumptions, are crucial for 

understanding the security foundations of factorization-based cryptography (Ireland & Rosen, 

1990; Yan, 2013). As quantum computing advances, it is essential to explore and develop new 

cryptographic techniques that can withstand the challenges posed by quantum factoring 

algorithms, ensuring the long-term security of our digital systems(Bernstein et al., 2017). 
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2.1.1.1 Prime Numbers and Factorization. At the heart of factorization lies the concept 

of prime numbers. A prime number is a positive integer greater than 1 that has exactly two 

positive divisors: 1 and itself. Examples of prime numbers include 2, 3, 5, 7, 11, and 13. The 

fundamental theorem of arithmetic states that every positive integer greater than 1 can be 

uniquely represented as a product of prime numbers, up to the order of the factors. This unique 

representation is called the prime factorization of a number. 

For example, consider the number 84. Its prime factorization is: 

84 = 2^2 × 3 × 7 

This means that 84 can be expressed as the product of the prime numbers 2, 3, and 7, 

with 2 appearing twice in the factorization. 

2.1.1.2 Factorization Algorithms. The process of finding the prime factorization of a 

number is called integer factorization. For small numbers, factorization can be done easily by 

trial division, where we divide the number by prime factors until no more divisors can be found. 

However, as the size of the number increases, factorization becomes increasingly difficult. 

There are several classical factoring algorithms, each with its own time complexity and 

efficiency. Some of the most well-known classical factoring algorithms include: 

• Trial division: This is the simplest factoring algorithm, with a time complexity of 

O(sqrt(N)), where N is the number to be factored (Riesel, 1994). While it is 

efficient for small numbers, it becomes impractical for large numbers. 

• Pollard's Rho algorithm: This is a probabilistic factoring algorithm with an 

expected time complexity of O(sqrt(p)), where p is the smallest prime factor of 

the number N (Pollard, 1975). It is more efficient than trial division but still 

becomes impractical for large numbers. 



7 

• Quadratic Sieve (QS): This is a more advanced factoring algorithm with a sub 

exponential time complexity of O(exp((1 + o(1))sqrt(log N log log N))) 

(Pomerance,1982). It is more efficient than Pollard's Rho algorithm but is still not 

practical for factoring large numbers used in cryptography. 

• General Number Field Sieve (GNFS): This is the most efficient classical 

factoring algorithm for large numbers, with a sub exponential time complexity of 

O(exp((1.923 + o(1))(log N)^(1/3)(log log N)^(2/3))) (Buhler et al., 1993b). 

Despite its efficiency compared to other classical algorithms, the GNFS is still not 

practical for factoring the large numbers used in modern cryptography. 

2.1.1.3 Modular Arithmetic. Modular arithmetic is another essential mathematical 

concept in factorization-based cryptography. In modular arithmetic, numbers "wrap around" 

when they reach a certain value, called the modulus. The modulus is typically denoted by the 

variable "m" or "n." 

For example, in modulo 12 (often written as "mod 12"), the numbers 13 and 1 are 

equivalent because 13 ≡ 1 (mod 12). This is because 13 divided by 12 leaves the remainder of 1. 

Modular arithmetic is used extensively in cryptography, particularly in the context of the 

RSA cryptosystem. In RSA, the modulus n is the product of two large prime numbers, p and q. 

The security of RSA relies on the difficulty of factoring this large composite number n. 

2.1.1.4 Hardness Assumptions. The security of factorization-based cryptography is 

based on the hardness assumption that factoring large composite numbers is computationally 

infeasible for classical computers. This assumption is rooted in the fact that the best-known 

classical factoring algorithms, such as the GNFS, have a sub-exponential time complexity 

(Buhler et al., 1993b). 
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In other words, as the size of the number N increases, the time required to factor it grows 

exponentially, making it impractical to factor large numbers used in cryptography. For example, 

factoring a 2048-bit RSA modulus using the GNFS would take billions of years, even with the 

most powerful classical supercomputers available today. 

However, the development of quantum computers and quantum factoring algorithms, 

such as Shor's algorithm, challenges this hardness assumption. Shor's algorithm has a polynomial 

time complexity, meaning that it can factor large numbers much faster than classical algorithms. 

This poses a significant threat to the security of factorization-based cryptography in a post-

quantum world. 

In conclusion, understanding the mathematical principles underlying factorization, 

including prime numbers, factorization algorithms, modular arithmetic, and hardness 

assumptions, is crucial for grasping the security foundations of factorization-based cryptography. 

As quantum computing advances, it is essential to explore and develop new cryptographic 

techniques that can withstand the challenges posed by quantum factoring algorithms, ensuring 

the long-term security of our digital systems. 

2.1.2 Historical Development of Factorization-based Cryptography 

The use of factorization in cryptography has a rich history, dating back to the early days 

of public-key cryptography (Kahn, 1996; Singh, 2000). This section will explore the key 

milestones and developments that have shaped the field of factorization-based cryptography, 

from the inception of the RSA cryptosystem to the ongoing efforts to develop quantum-resistant 

cryptographic schemes. 

2.1.2.1 The RSA Cryptosystem. The RSA cryptosystem, named after its inventors Ron 

Rivest, Adi Shamir, and Leonard Adleman, was first introduced in 1977. It relies on the 
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difficulty of factoring large numbers (Rivest et al., 1978). As computational power increased and 

more efficient factoring algorithms were developed, the recommended key sizes for RSA grew to 

maintain security (F. Bauer, 2013). RSA was the first practical implementation of public-key 

cryptography, a revolutionary concept that allowed secure communication between parties 

without the need for a pre-shared secret key. 

The security of the RSA cryptosystem relies on the difficulty of factoring large composite 

numbers, known as the RSA problem. The RSA modulus, denoted as n, is the product of two 

large prime numbers, p and q. The public key consists of the modulus n and a public exponent e, 

while the private key consists of the prime factors p and q, along with a private exponent d. 

To encrypt a message using RSA, the sender raises the message to the power of the 

public exponent e, modulo n. To decrypt the message, the receiver raises the ciphertext to the 

power of the private exponent d, modulo n. The security of RSA is based on the assumption that 

an attacker, knowing only the public key (n, e), cannot efficiently factor the modulus n to obtain 

the private key (p, q, d). 

2.1.2.2 Early Factorization Challenges. As RSA gained widespread adoption, 

researchers began to study the security of the cryptosystem and the difficulty of factoring large 

numbers. In the early days of RSA, the recommended key size was 512 bits, meaning that the 

RSA modulus n was a 512-bit number (Crypto, 2002). 

In 1991, the RSA-129 challenge was issued by RSA Laboratories, offering a $100 reward 

for the successful factorization of a 129-digit (approximately 426-bit) number. The challenge 

was intended to demonstrate the security of RSA and the difficulty of factoring large numbers. 

However, in 1994, a team of researchers led by Derek Atkins, Michael Graff, Arjen Lenstra, and 
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Paul Leyland successfully factored RSA-129 using the Quadratic Sieve algorithm, demonstrating 

that 512-bit RSA keys were no longer secure. 

2.1.2.3 Increasing Key Sizes. As computational power increased and more efficient 

factoring algorithms were developed, the recommended key sizes for RSA grew to maintain 

security. In the late 1990s, 1024-bit RSA keys became the standard, providing a higher level of 

security than 512-bit keys. 

However, by the mid-2000s, researchers began to recommend transitioning to even larger 

key sizes, such as 2048 bits, to stay ahead of advances in factoring capabilities. The transition to 

larger key sizes was driven by the development of more efficient factoring algorithms, such as 

the General Number Field Sieve (GNFS), and the increasing availability of computational 

resources. 

2.1.2.4 Quantum Computing and Shor's Algorithm. The advent of quantum 

computing in the 1990s introduced a new challenge to the security of factorization-based 

cryptography. In 1994, Peter Shor introduced a quantum algorithm, now known as Shor's 

algorithm, which could factor large numbers in polynomial time, exponentially faster than the 

best-known classical factoring algorithms. 

The development of Shor's algorithm sent shockwaves through the cryptography 

community, as it demonstrated the potential of quantum computers to break the security of 

widely used cryptographic systems like RSA. The realization that a sufficiently large quantum 

computer could render factorization-based cryptography insecure prompted researchers to begin 

exploring new, quantum-resistant cryptographic schemes. 

2.1.2.5 Post-Quantum Cryptography. In response to the threat posed by quantum 

computing, the field of post-quantum cryptography emerged. Post-quantum cryptography 
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focuses on developing cryptographic algorithms that are resistant to attacks by both classical and 

quantum computers. 

Several post-quantum cryptographic schemes have been proposed, including: 

• Lattice-based cryptography: These schemes are based on the hardness of 

problems in high-dimensional lattices, such as the Shortest Vector Problem (SVP) 

and the Closest Vector Problem (CVP). 

• Code-based cryptography: These schemes use error-correcting codes to 

construct cryptographic primitives, such as the McEliece cryptosystem. 

• Multivariate cryptography: These schemes rely on the difficulty of solving 

systems of multivariate polynomial equations over finite fields. 

• Hash-based signatures: These schemes use hash functions to construct digital 

signature schemes that are resistant to quantum attacks. 

In recent years, the National Institute of Standards and Technology (NIST) has been 

conducting a standardization process for post-quantum cryptography, aiming to identify and 

standardize quantum-resistant public-key cryptographic algorithms. This ongoing effort reflects 

the urgent need to transition to quantum-resistant cryptography before the advent of large-scale 

quantum computers. 

2.1.2.6 Continued Importance of Factorization. Despite the threat posed by quantum 

computing, factorization-based cryptography remains widely used today. RSA, in particular, is 

still a common choice for secure communication, digital signatures, and key exchange. 

The continued use of factorization-based cryptography underscores the importance of 

thoroughly understanding the mathematical principles underlying factorization, as well as the 

historical evolution of factorization in cryptography. By studying the past developments and 
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challenges in this field, researchers can better inform the design and analysis of future 

cryptographic schemes, both classical and quantum resistant. 

Moreover, the historical perspective highlights the ongoing arms race between 

cryptographers and cryptanalysts, emphasizing the need for continuous research and innovation 

in cryptography to stay ahead of evolving threats. 

In conclusion, the historical evolution of factorization in cryptography, from the 

introduction of RSA to the ongoing development of post-quantum cryptography, showcases the 

crucial role that factorization has played in shaping modern cryptography. As we move into the 

era of quantum computing, understanding this historical context is essential for navigating the 

challenges and opportunities that lie ahead in ensuring the security of our digital systems. 

2.2 Evolution of Quantum Computing 

2.2.1 Theoretical Foundations 

Quantum computing, based on the principles of quantum mechanics, was first proposed 

by Richard Feynman and Yuri Manin in the 1980s (Galindo & Martí N-Delgado, n.d.). The 

concept of quantum bits (qubits) and quantum gates laid the foundation for the development of 

quantum algorithms (Kusyk et al., 2021). 

In 1985, David Deutsch described the first universal quantum computer, capable of 

simulating any other quantum computer with at most a polynomial slowdown (Deutsch, 1985). 

This led to the development of the Deutsch-Jozsa algorithm, demonstrating the potential of 

quantum computers to outperform classical computers for certain problems (Deutsch & Jozsa, 

1992). Superposition and entanglement are crucial quantum phenomena that enable quantum 

computers to perform certain computations exponentially faster than classical computers (M. 

Nielsen & Chuang, 2010). 
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2.2.1.1 Superposition. In quantum mechanics, a system can exist in multiple states 

simultaneously, known as a superposition of states. For a single qubit, this means that it can be in 

a linear combination of the basis states |0⟩ and |1⟩: 

 

|𝜓⟩  =  𝛼|0⟩  +  𝛽|1⟩ 

 

where α and β are complex numbers satisfying |𝛼|^2 +  |𝛽|^2 =  1. The probabilities of 

measuring the qubit in the |0⟩ or |1⟩ state are |𝛼|^2 and |𝛽|^2, respectively. 

2.2.1.2 Entanglement. Entanglement is a quantum phenomenon in which two or more 

particles are correlated in such a way that the quantum state of each particle cannot be described 

independently of the others, even when the particles are separated by a large distance. For 

example, consider a two-qubit entangled state known as the Bell state: 

 

|𝛷+⟩  =  (|00⟩  +  |11⟩) / √2 

In this state, measuring one qubit instantly determines the state of the other qubit, 

regardless of the distance between them. Entanglement is a crucial resource in quantum 

computing and quantum cryptography. 

2.2.2 Quantum Algorithms for Factorization 

The most significant breakthrough in quantum algorithms for factorization came in 1994 

when Peter Shor introduced Shor's algorithm (Shor, n.d.). This quantum algorithm can factor 

large numbers in polynomial time, exponentially faster than the best-known classical 

algorithms(Shor, n.d.). 

Shor's algorithm consists of two main parts: 
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a. A classical reduction of the factoring problem to the problem of finding the period of a 

function. 

b. A quantum algorithm for finding the period of a function using the Quantum Fourier 

Transform (QFT). 

The quantum circuit for Shor's algorithm can be represented as follows: 

Figure 1 

Compact and Minimalistic Quantum Circuit for Shor's Algorithm 

 

The ability of Shor's algorithm to efficiently factor large numbers has significant 

implications for the security of cryptographic systems that rely on the hardness of factorization 

(Bernstein et al., 2017). 

2.3 Quantum Computing's Threat to Cryptography  

The development of quantum computers and quantum algorithms, particularly Shor's 

algorithm, poses a serious threat to the security of widely used cryptographic systems, such as 

RSA, which rely on the difficulty of factoring large numbers (Boudot et al., n.d.; Shor, n.d.). 
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If large-scale quantum computers become available, they could be used to break the 

security of these systems, rendering them vulnerable to attacks (Bernstein et al., 2017). This has 

led to a growing interest in the development of quantum-resistant cryptography, which aims to 

design cryptographic systems that are secure against both classical and quantum computers. 

2.4 Current Cybersecurity Practices and Quantum Vulnerabilities 

Current cybersecurity practices heavily rely on cryptographic systems that are based on 

the hardness of certain mathematical problems, such as integer factorization (e.g., RSA) (Rivest 

et al., 1978) and discrete logarithms (e.g., Diffie-Hellman key exchange) (Diffie et al., n.d.). 

These systems are widely used for secure communication, data protection, and authentication 

(Kahn, 1996; Singh, 2000). 

However, the advent of quantum computing and the development of efficient quantum 

algorithms like Shor's algorithm have exposed the vulnerabilities of these systems (Boudot et al., 

n.d.; Shor, n.d.). If a sufficiently large quantum computer is built, it could break the security of 

these systems, compromising the confidentiality and integrity of sensitive information. 

To address this threat, researchers are actively working on developing quantum-resistant 

cryptography, also known as post-quantum cryptography [7]. This involves designing and 

analyzing new cryptographic algorithms that are believed to be secure against both classical and 

quantum computers [7]. Some examples of quantum-resistant cryptographic schemes include 

lattice-based cryptography, code-based cryptography, and multivariate cryptography. 

In addition to the development of quantum-resistant cryptography, there is also a growing 

interest in quantum cryptography, which uses the principles of quantum mechanics to ensure 

secure communication. The most well-known quantum cryptography protocol is the BB84 

protocol, which uses the quantum states of photons to securely distribute encryption keys. 
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As the field of quantum computing continues to advance, it is crucial for cybersecurity 

professionals to stay informed about the potential vulnerabilities and to adopt quantum-resistant 

and quantum-based security measures to protect sensitive information in the post-quantum era. 
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CHAPTER III: THEORETICAL FRAMEWORK 

3.1 Classical Factorization: Number Field Sieve (NFS) 

The Number Field Sieve (NFS) is the most efficient classical algorithm for factoring 

large numbers (Kleinjung, 2017). It is a sub-exponential algorithm, which means that its running 

time grows slower than an exponential function but faster than any polynomial function of the 

input size, with a running time complexity that depends on the size of the number being 

factored(Buhler et al., 1993a). 

 

𝑒𝑥𝑝((1.923 +  𝑜(1))(𝑙𝑜𝑔 𝑛)^(1/3)(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)^(2/3)) 

 

where n is the number to be factored. 

The NFS algorithm is based on the idea of finding a congruence of squares modulo the 

number to be factored, N. If we can find two integers x and y such that x^2 is congruent to y^2 

modulo N and x is not congruent to ±y modulo N, then gcd(x-y, N) will be a non-trivial factor of 

N (Lenstra et al., 1990). 

The NFS algorithm consists of several stages including polynomial selection, sieving, linear 

algebra, and square root computation (Kleinjung, 2017). 

1. Polynomial Selection: The first stage of the NFS algorithm involves selecting two 

irreducible polynomials f(x) and g(x) with integer coefficients, such that they have a 

common root m modulo N (Bai et al., 2010). The choice of polynomials greatly 

influences the efficiency of the subsequent stages. The goal is to find polynomials that 

minimize the size of the coefficients and the degree while maximizing the probability of 

generating smooth numbers in the sieving stage. One common method for polynomial 



18 

selection is the base-m method, where f(x) is chosen as a linear polynomial, and g(x) is a 

polynomial of degree d with small coefficients such that f(m) and g(m) are both 

congruent to 0 modulo N (Bai et al., 2010). The base-m method constructs polynomials 

in the following way: 

• Choose an integer m such that 𝑁^(1/𝑑)  ≤  𝑚 <  2𝑁^(1/𝑑), where d is the desired 

degree of g(x). 

• Let 𝑓(𝑥)  =  𝑥 −  𝑚. 

• Compute g(x) by expanding N in base m: 𝑁 =  𝑔_𝑑 ∗  𝑚^𝑑 +  𝑔_{𝑑 − 1}  ∗  𝑚^(𝑑 −

1) + . . . + 𝑔_0, where 0 ≤ g_i < m for all i. 

The resulting polynomials f(x) and g(x) have a common root m modulo N, and 

the coefficients of g(x) are bounded by m. 

2. Sieving: The sieving stage is the most time-consuming part of the NFS algorithm. The goal of 

this stage is to find many pairs of coprime integers (a, b) such that the values of f(a/b) and g(a/b) 

are both smooth, i.e., they can be factored into small prime factors (Lenstra et al., 1990). To find 

these pairs, the sieving process is performed over a large rectangular region in the (a, b) plane, 

typically defined by |a| ≤ A and 0 < b ≤ B, where A and B are chosen based on the size of N and 

the desired smoothness bound. For each pair (a, b) in the sieving region, the values of f(a/b) and 

g(a/b) are computed and factored using trial division or other factorization methods. If both 

values are smooth (i.e., their prime factors are smaller than a chosen smoothness bound), the pair 

(a, b) is stored along with the corresponding factorizations. To optimize the sieving process, 

various techniques can be employed: 

• Lattice sieving: Instead of sieving over the entire rectangular region, lattice sieving 

focuses on a sub-lattice of points in the (a, b) plane. This reduces the number of points to 

be tested and improves the efficiency of the sieving stage. 
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• Line sieving: Line sieving is a technique that sieves along lines in the (a, b) plane. 

It takes advantage of the fact that the values of f(a/b) and g(a/b) change linearly 

along certain lines, allowing for faster computation and factorization of these 

values. 

• Large prime variation: The large prime variation allows for the use of larger 

prime factors (beyond the chosen smoothness bound) in the factorizations of 

f(a/b) and g(a/b). This increases the number of smooth pairs found during sieving, 

at the cost of additional processing in the linear algebra stage. 

3. Linear Algebra: After the sieving stage, a large sparse matrix is constructed using the 

relations obtained from the smooth pairs (a, b). Each row of the matrix corresponds to a 

relation, and each column corresponds to a prime factor (or a large prime, if the large 

prime variation is used) appearing in the factorizations of f(a/b) and g(a/b) (Lenstra et al., 

1990). The goal of the linear algebra stage is to find a linear combination of the rows that 

equals the zero vector modulo 2. In other words, we want to find a subset of the relations 

such that the product of their f(a/b) values is a square, and the product of their g(a/b) 

values is also a square. To find this linear combination, we need to solve a large sparse 

linear system over GF(2) (the field of two elements). This is typically done using 

specialized algorithms designed for sparse systems, such as the block Lanczos algorithm 

or the block Wiedemann algorithm (Coppersmith, 1993). The block Lanczos and block 

Wiedemann algorithms take advantage of the sparsity of the matrix and perform the 

linear algebra computations efficiently. They work by iteratively computing matrix-vector 

products and constructing a sequence of vectors that eventually leads to a solution of the 

linear system. 
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4. Square Root: Once a linear dependency is found in the previous stage, it is used to 

construct a congruence of squares modulo N. This is done by multiplying the relations 

corresponding to the rows selected in the linear combination. Let S be the set of indices 

of the selected rows, and for each i ∈ S, let (a_i, b_i) be the corresponding smooth pair. 

Then, we have: (∏_{i ∈ S} f(a_i/b_i))^2 ≡ (∏_{i ∈ S} g(a_i/b_i))^2 (mod N) This 

congruence can be rewritten as: x^2 ≡ y^2 (mod N) where x = ∏_{i ∈ S} f(a_i/b_i) and y 

= ∏_{i ∈ S} g(a_i/b_i). To find a non-trivial factor of N, we need to compute the square 

root of the congruence modulo N. This is typically done using the Tonelli-Shanks 

algorithm or other similar algorithms for computing square roots modulo a prime power 

(Lenstra et al., 1990). If the computed square roots x and y satisfy x ≢ ±y (mod N), then 

gcd(x-y, N) will be a non-trivial factor of N. If x ≡ ±y (mod N), then the linear algebra 

stage needs to be repeated with a different linear combination to find a congruence that 

leads to a non-trivial factor. 

Despite its efficiency compared to other classical factorization algorithms, NFS still has a 

sub-exponential running time, making it impractical for factoring the large numbers used in 

cryptographic systems like RSA. 

3.2 Quantum Factorization: Shor's Algorithm 

Shor's algorithm is a quantum algorithm for integer factorization that runs in polynomial 

time, exponentially faster than the best-known classical algorithms (Shor, 1999). The algorithm 

consists of two main parts: a classical reduction of the factoring problem to the problem of 

finding the period of a function, and a quantum algorithm for finding the period using the 

Quantum Fourier Transform(QFT) (Lin, n.d.). 
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3.2.1 Classical Reduction 

Reduce the factoring problem to the problem of finding the period of a function 𝑓(𝑥)  =

 𝑎^𝑥 𝑚𝑜𝑑 𝑛, where a is a random integer coprime to n. This step is crucial for setting up the 

quantum part of the algorithm and ensuring its efficiency (Lin, n.d.). 

3.2.2 Quantum Period Finding 

The quantum part of Shor's algorithm uses the Quantum Fourier Transform (QFT) to find 

the period of a function efficiently (Shor, n.d.). The QFT is a quantum analog of the classical 

Fast Fourier Transform (FFT) and plays a central role in the speedup achieved by Shor's 

algorithm(Mullamuri, 2021). The quantum circuit for the period finding step of Shor's algorithm 

can be represented as shown in Figure 1. 

The algorithm starts by preparing two quantum registers: one with enough qubits to 

represent the number to be factored (n), and another with enough qubits to perform the modular 

exponentiation. The first register is initialized in a uniform superposition of all possible states 

using Hadamard gates. 

Next, the modular exponentiation is performed on the second register, controlled by the 

state of the first register. This creates a periodic superposition of states in the second register. 

The QFT is then applied to the first register, which converts the periodic superposition into a 

state where the period can be measured with high probability. The period is obtained by 

measuring the first register and performing classical post-processing. 

Once the period (r) is found, the factors of n can be obtained by computing the greatest 

common divisor (GCD) of 𝑎^(𝑟/2)  ±  1 and n, where a is the random integer chosen in the 

classical reduction step. 
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Shor's algorithm demonstrates the potential of quantum computers to solve certain 

problems, like factorization, exponentially faster than classical computers. 

3.2.3 Quantum Gates in Shor's Algorithm 

Shor's algorithm employs several quantum gates, such as the Hadamard gate, controlled-U 

gates, and the Quantum Fourier Transform (QFT), to perform the necessary operations (Lin, n.d.; 

Shor, n.d.). These quantum gates enable the algorithm to exploit the power of quantum 

superposition and entanglement to efficiently factor large numbers (Mullamuri, 2021). 

1. Hadamard Gate (H): The Hadamard gate is a single-qubit gate that creates a 

superposition of states. It maps the basis states |0⟩ and |1⟩ as follows: 

 

𝐻|0⟩  =  (|0⟩  +  |1⟩) / √2 𝐻|1⟩  =  (|0⟩  −  |1⟩) / √2 

  

The matrix representation of the Hadamard gate is: 

  

𝐻 =  (1/√2) [1 1] [1 − 1] 

  

2. Controlled-U Gates: Controlled-U gates are two-qubit gates that apply a unitary 

operation U on the target qubit if the control qubit is in the |1⟩ state. In Shor's algorithm, 

the controlled-U gates are used to perform the modular exponentiation step. The matrix 

representation of a controlled-U gate is: 

 

𝐶 − 𝑈 =  [1 0 0 0] [0 1 0 0] [0 0 𝑢_00 𝑢_01] [0 0 𝑢_10 𝑢_11] 
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where u_ij are the elements of the unitary matrix U. 

3. Quantum Fourier Transform (QFT): The QFT is a crucial component of Shor's 

algorithm, used to find the period of the modular exponentiation function. QFT is a linear 

operator that applies a Fourier transform to the amplitudes of a quantum state. For an N-

dimensional quantum state |x⟩, the QFT is defined as: 

 

𝑄𝐹𝑇|𝑥⟩  =  (1/√𝑁) 𝛴_{𝑘 = 0}^{𝑁 − 1} 𝑒^{2𝜋𝑖 ∗ 𝑥𝑘/𝑁} |𝑘⟩ 

 

Where |𝑥⟩ is the input quantum state, |𝑘⟩ is the output basis states, N is the 

dimension of the quantum state (number of basis states), and 𝑖 is the imaginary unit 

(𝑖^2 =  −1) 

The QFT can be implemented using a series of Hadamard gates and controlled phase 

rotation gates. The phase rotation gate R_k applies a phase shift of 𝑒^{2𝜋𝑖/2^𝑘} to the |1⟩ state: 

 

𝑅_𝑘 =  [1 0] [0 𝑒^{2𝜋𝑖/2^𝑘}] 

 

Where k is the phase rotation angle parameter 

The circuit for a 3-qubit QFT can be represented as follows: 
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Figure 2 

3-qubit QFT Circuit 

 

The QFT has a time complexity of 𝑂((𝑙𝑜𝑔 𝑁)^2), which is exponentially faster than the 

classical FFT. 

3.2.4 Quantum computing's speed advantage in factorization 

The speed advantage of quantum computing in factorization is rooted in the fundamental 

differences between classical and quantum algorithms (Shor, n.d.). Classical factoring 

algorithms, such as the General Number Field Sieve (GNFS), have a sub-exponential time 

complexity, expressed as O(exp((1.923 + o(1))(log N)^(1/3)(log log N)^(2/3))), where N is the 

number to be factored. This means that as the size of the number N increases, the time required 

to factor it grows exponentially, making it infeasible for classical computers to factor large 

numbers in a reasonable amount of time. 

In contrast, while classical factoring algorithms, such as the General Number Field Sieve 

(GNFS), have a sub-exponential time complexity, Shor's quantum algorithm has a polynomial 

time complexity (Shor, n.d.). This exponential speedup is made possible by the unique properties 

of quantum systems, namely superposition and entanglement (M. Nielsen & Chuang, 2010). The 

stark difference in time complexity between classical and quantum factoring algorithms 

highlights the potential of quantum computing to revolutionize cryptography. 
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To illustrate the quantum speedup, consider a library analogy. Imagine a library with 

millions of books, each representing a possible factor of a large number N. A classical computer 

would need to check each book individually to find the correct factors, which would take an 

enormous amount of time. In contrast, a quantum computer can use the principle of superposition 

to create a quantum state that represents all the books simultaneously. By manipulating this 

quantum state using quantum gates and the Quantum Fourier Transform (QFT), a quantum 

computer can explore all possible factors at once and quickly identify the correct ones. 

The quantum speedup in factorization is made possible by the unique properties of 

quantum systems, namely superposition and entanglement. Superposition allows a quantum 

computer to represent multiple states simultaneously, enabling it to perform many calculations in 

parallel. Entanglement, on the other hand, allows quantum bits (qubits) to be correlated in ways 

that are not possible with classical bits, leading to a significant increase in computational power. 

The impact of this quantum speedup on cryptography cannot be overstated. Many widely 

used cryptographic systems, such as RSA, rely on the difficulty of factoring large numbers for 

their security. The assumption is that factoring these large numbers would take an impractical 

amount of time using classical computers. However, a quantum computer capable of running 

Shor's algorithm could factor these numbers much faster, rendering the cryptographic systems 

vulnerable to attacks. 

For example, a quantum computer with around 4,000 qubits and a sufficiently low error 

rate could factor a 2048-bit RSA key in a matter of hours. This is a significant concern, as 2048-

bit RSA keys are widely used for secure communication, digital signatures, and other 

cryptographic purposes. The ability to factor these keys quickly using a quantum computer 
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would have profound implications for the security of online transactions, sensitive data, and 

critical infrastructure. 

To put this into perspective, consider the following scenario. An attacker with access to a 

large-scale quantum computer could potentially intercept encrypted communications, forge 

digital signatures, and impersonate secure websites. This would undermine the trust and security 

that form the foundation of our digital world, leading to widespread economic and social 

disruption. 

The looming threat of quantum computing to factorization-based cryptography has 

prompted researchers and organizations to actively explore and develop quantum-resistant 

cryptographic algorithms. These algorithms are designed to withstand attacks from both classical 

and quantum computers, ensuring the long-term security of our digital systems. 

In conclusion, the speed advantage of quantum computing in factorization, as 

demonstrated by Shor's algorithm, poses a significant challenge to the security of modern 

cryptography. The exponential speedup achieved by quantum computers in solving the factoring 

problem necessitates a proactive approach to developing and implementing quantum-resistant 

cryptographic solutions. By understanding the implications of quantum factorization and taking 

steps to mitigate the risks, we can work towards ensuring the resilience and integrity of our 

digital infrastructure in the face of evolving quantum threats. 

3.3 Fast Fourier Transform (FFT) vs. Quantum Fourier Transform (QFT) 

The Fast Fourier Transform (FFT) is a classical algorithm for efficiently computing the 

Discrete Fourier Transform (DFT) of a sequence (Brigham & Morrow, n.d.). The DFT of a 

sequence x_n of length N is defined as: 
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𝑋_𝑘 =  𝛴_{𝑛 = 0}^{𝑁 − 1} 𝑥_𝑛 ∗  𝑒^{−2𝜋𝑖 ∗ 𝑘𝑛/𝑁} 

 

where k = 0, 1, ..., N-1, 𝑋_𝑘 is the DFT output at index k, 𝑥_𝑛 is the input sequence, N is 

the length of the input sequence, k, n are the indices ranging from 0 to N-1 and 𝑖 is the imaginary 

unit. 

The FFT algorithm has a time complexity of 𝑂(𝑁 𝑙𝑜𝑔 𝑁), which is a significant 

improvement over the naive DFT algorithm with a time complexity of 𝑂(𝑁^2) (Brigham & 

Morrow, n.d.). 

On the other hand, the Quantum Fourier Transform (QFT) is a quantum analog of the 

FFT, which performs the DFT on a quantum state (M. Nielsen & Chuang, 2010). The QFT is 

defined as: 

 

|𝑥⟩  =  (1/√𝑁) 𝛴_{𝑘 = 0}^{𝑁 − 1} 𝑒^{2𝜋𝑖 ∗ 𝑥𝑘/𝑁} |𝑘⟩ 

 

where |x⟩ is the quantum state and |k⟩ are the basis states. 

The QFT can be implemented using a quantum circuit consisting of Hadamard gates and 

controlled phase rotation gates. The circuit for a 3-qubit QFT can be represented as shown in 

Figure 2: 

The QFT has a time complexity of 𝑂((𝑙𝑜𝑔 𝑁)^2), which is exponentially faster than the 

classical FFT (M. Nielsen & Chuang, 2010). This speedup is one of the key reasons behind the 

efficiency of Shor's algorithm for factorization (Lin, n.d.; Shor, n.d.). 
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The QFT is also used in other quantum algorithms, such as the Quantum Phase 

Estimation algorithm, which is a core component of many quantum algorithms for solving linear 

systems, eigenvalue problems, and differential equations. 

The Quantum Fourier Transform (QFT) is a linear operator that performs a Fourier 

transform on the amplitudes of a quantum state. For an N-dimensional quantum state |x⟩, where x 

is an integer between 0 and N-1, the QFT is defined as: 

 

𝑄𝐹𝑇|𝑥⟩  =  (1/√𝑁) 𝛴_{𝑘 = 0}^{𝑁 − 1} 𝑒^{2𝜋𝑖 ∗ 𝑥𝑘/𝑁} |𝑘⟩ 

 

To understand the mathematics behind the QFT, let's consider the binary representation 

of x and k: 

 

𝑥 =  𝑥_{𝑛 − 1}2^{𝑛 − 1} +  𝑥_{𝑛 − 2}2^{𝑛 − 2}  +  … +  𝑥_1 2^1 +  𝑥_0 2^0 

𝑘 =  𝑘_{𝑛 − 1}2^{𝑛 − 1}  +  𝑘_{𝑛 − 2}2^{𝑛 − 2} + . . . + 𝑘_1 2^1 +  𝑘_0 2^0 

 

where x_i and k_i are binary digits (0 or 1), and 𝑛 =  𝑙𝑜𝑔_2(𝑁). 

The product xk in the exponent of the QFT can be expressed as: 

 

𝑥𝑘 =  (𝑥_{𝑛 − 1}2^{𝑛 − 1}  +  𝑥_{𝑛 − 2}2^{𝑛 − 2} + . . . + 𝑥_1 2^1 +  𝑥_0 2^0)  ∗  (𝑘_{𝑛

− 1}2^{𝑛 − 1}  +  𝑘_{𝑛 − 2}2^{𝑛 − 2} + . . . + 𝑘_1 2^1 +  𝑘_0 2^0) 

Expanding this product and rearranging the terms, we get: 
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𝑥𝑘 =  𝑥_{𝑛 − 1}𝑘_{𝑛 − 1}2^{2(𝑛 − 1)}  +  𝑥_{𝑛 − 2}𝑘_{𝑛 − 1}2^{2𝑛 − 3} + . . . + 𝑥_0𝑘_{𝑛

− 1}2^{𝑛 − 1}  +  𝑥_{𝑛 − 1}𝑘_{𝑛 − 2}2^{2𝑛 − 3}  +  𝑥_{𝑛 − 2}𝑘_{𝑛

− 2}2^{2(𝑛 − 2)} + . . . + 𝑥_0𝑘_{𝑛 − 2}2^{𝑛 − 2} + . . . 𝑥_{𝑛 − 1}𝑘_0 2^{𝑛

− 1}  +  𝑥_{𝑛 − 2}𝑘_0 2^{𝑛 − 2} + . . . + 𝑥_0𝑘_0 2^0 

 

Now, let's focus on the first term in the sum: 𝑒^{2𝜋𝑖 ∗ 𝑥_{𝑛 − 1}𝑘_{𝑛 − 1}2^{2(𝑛 − 1)}/𝑁}. 

Since 2^{2(𝑛 − 1)}  =  2^{2𝑛 − 2}  =  2𝑁, this term simplifies to: 

 

𝑒^{2𝜋𝑖𝑥_{𝑛 − 1}𝑘_{𝑛 − 1}2^{2(𝑛 − 1)}/𝑁}  =  𝑒^{2𝜋𝑖𝑥_{𝑛 − 1}𝑘_{𝑛 − 1}}  

=  (−1)^{𝑥_{𝑛 − 1}𝑘_{𝑛 − 1}} 

 

This means that the most significant bit of 𝑥 (𝑥_{𝑛 − 1}) controls a phase shift of π (i.e., a 

sign flip) on the most significant bit of 𝑘 (𝑘_{𝑛 − 1}). Similarly, the second term in the sum, 

𝑒^{2𝜋𝑖 ∗ 𝑥_{𝑛 − 2}𝑘_{𝑛 − 1}2^{2𝑛 − 3}/𝑁}, simplifies to: 

 

𝑒^{2𝜋𝑖𝑥_{𝑛 − 2}𝑘_{𝑛 − 1}2^{2𝑛 − 3}/𝑁}  =  𝑒^{2𝜋𝑖𝑥_{𝑛 − 2}𝑘_{𝑛 − 1}/2} 

 

This term represents a controlled phase shift of 𝜋/2 on the most significant bit of k, 

controlled by the second most significant bit of 𝑥 (𝑥_{𝑛 − 2}). 

Continuing this process for the remaining terms, we can see that the QFT applies a series 

of controlled phase rotations on the qubits of the output state, with the angles of rotation 

determined by the input state's binary representation. 
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The QFT circuit can be constructed using a series of Hadamard gates and controlled 

phase rotation gates. The Hadamard gates create a superposition of states, while the controlled 

phase rotation gates apply the necessary phase shifts based on the input state's binary 

representation. 

The inverse QFT (QFT^†) can be used to reverse the process and recover the original 

input state from the Fourier-transformed state. The inverse QFT is obtained by applying the gates 

of the QFT circuit in reverse order and replacing the phase rotation angles with their negatives. 

In summary, the Quantum Fourier Transform is a powerful tool in quantum computing 

that allows for the efficient implementation of algorithms like Shor's algorithm for factoring 

large numbers. The QFT exploits the properties of quantum superposition and entanglement to 

perform a Fourier transform on the amplitudes of a quantum state, enabling exponential speedups 

over classical algorithms. 
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CHAPTER IV: EXPERIMENTAL STUDY 

4.1 Research Design 

The field of cryptography hinges on the mathematical difficulty of factoring large 

integers. Public-key cryptosystems, like RSA, safeguard our online interactions by relying on 

this very challenge. Shor's quantum algorithm, introduced by Peter Shor in 1994, disrupts this 

landscape by offering a potential way to factor large integers significantly faster than classical 

algorithms. Shor's algorithm leverages the exotic properties of quantum mechanics, specifically 

superposition and entanglement, to achieve this speedup.  This experimental study investigates 

the capabilities of Shor's algorithm relative to the Number Field Sieve (NFS), a leading classical 

factoring algorithm (Lenstra et al., 1990). By comparing a simulated implementation of Shor's 

algorithm with NFS on increasingly larger integers, we aim to illuminate the practical challenges 

and limitations of Shor's algorithm in its current state, as well as its potential for future 

cryptographic breakthroughs (Rossi et al., 2021). 

4.2 Simulation of QFT/Shor's Algorithm 

4.2.1 Tools and Software Used 

Quantum Simulator: IBM Qiskit (version – 1.0) 

Programming Language: Python 

Libraries: Qiskit 

4.2.2 Experiment Setup 

4.2.2.1 Introduction. Shor's algorithm is a quantum algorithm developed by Peter Shor 

in 1994 for factoring large integers efficiently. It demonstrates the potential of quantum 

computers to solve certain problems much faster than classical computers. The algorithm relies 
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on the principles of quantum superposition and entanglement to perform period-finding, which is 

a crucial step in factoring numbers. 

In this document, we will provide a detailed explanation of the implementation of Shor's 

algorithm using the Qiskit quantum computing library. We will focus on the successful 

factorization of the numbers 15 and 21 using the bases 11 and 13, respectively, with an accuracy 

of 1. The experimental setup for simulating Shor's algorithm involves several steps, including 

choosing the number of qubits, creating the quantum circuit, performing modular exponentiation, 

applying the inverse Quantum Fourier Transform (QFT), measuring phases and estimating the 

period, and finding the factors (Rossi et al., 2021). The performance of the algorithm is evaluated 

using metrics such as accuracy, time complexity, and resource utilization (Jia, 2023). 

4.2.2.2 Qiskit: An Open-Source Quantum Computing Framework. Qiskit is an open-

source quantum computing framework developed by IBM and the quantum computing 

community (Qiskit Development Team, 2024). It provides a comprehensive set of tools and 

libraries for creating, manipulating, and running quantum circuits on both simulators and real 

quantum hardware. 

Qiskit is written in Python and is designed to be accessible to a wide range of users, from 

beginners to advanced researchers. It consists of several key components like Qiskit Terra, Qiskit 

Aer, Qiskit Ignis, Qiskit Aqua and Qiskit IBMQ provider. 

Qiskit Terra: The foundation of Qiskit, provides a set of tools for building and 

optimizing quantum circuits. 

Qiskit Aer: A high-performance simulator for running quantum circuits on classical 

computers. It includes two main types of simulators: the state vector simulator and the QASM 

simulator. 
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The state vector simulator is a deterministic simulator that tracks the full quantum state of 

a system as it evolves through a quantum circuit. This simulator is useful for simulating small to 

medium-sized quantum circuits and for debugging and testing quantum algorithms. 

On the other hand, the QASM (Quantum Assembly Language) simulator is a more 

versatile and scalable simulator that mimics the behavior of a real quantum computer. It allows 

users to run larger quantum circuits and to simulate the effects of noise and errors on quantum 

computations. 

The QASM simulator works by taking a quantum circuit as input, which is described 

using the OpenQASM language (Cross et al., 2017). The simulator then executes the circuit and 

returns the measurement outcomes, along with other statistics such as the counts of each 

measured bitstring. 

One of the key features of the QASM simulator is its ability to model realistic noise and 

errors that occur in actual quantum hardware. Qiskit Aer provides a variety of noise models, such 

as depolarizing noise, amplitude damping, and phase damping, which can be applied to 

simulated quantum operations. This allows users to study the effects of noise on their quantum 

circuits and to develop noise-tolerant quantum algorithms. 

The QASM simulator also supports advanced features such as shot-based simulations, 

where the circuit is executed multiple times (shots) to obtain a distribution of measurement 

outcomes. This is particularly useful for simulating the probabilistic nature of quantum 

measurements and for estimating the expectation values of observables. 

In addition to its noise modeling capabilities, the QASM simulator is highly optimized 

for performance. It employs various techniques, such as parallelization and cache optimization, 

to efficiently simulate large quantum circuits on classical hardware. 
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In the context of this thesis, the QASM simulator is used to simulate Shor's algorithm and 

to compare its performance with classical factoring algorithms. By leveraging the simulator's 

ability to model noise and errors, we can study the robustness of Shor's algorithm under realistic 

conditions and assess its potential for practical quantum computing applications. 

Qiskit Ignis: A collection of tools and techniques for characterizing and mitigating noise 

in quantum systems, enabling the development of noise-tolerant quantum applications. 

Qiskit Aqua: A library of quantum algorithms and applications, covering various 

domains such as optimization, machine learning, and finance. 

Qiskit IBMQ Provider: A module that allows users to access and run experiments on 

IBM's quantum hardware through the cloud. 

One of the key features of Qiskit is its ability to create and manipulate quantum circuits 

using a high-level, intuitive syntax. Quantum circuits are represented as objects in Qiskit, and 

quantum operations are applied using methods such as QuantumCircuit.h() for the Hadamard 

gate or QuantumCircuit.cx() for the controlled-NOT gate. 

Qiskit also provides a wide range of tools for visualizing and analyzing quantum circuits 

and results. Users can plot quantum state histograms, Bloch spheres, and quantum state 

transitions using built-in visualization functions. 

In addition to its core functionalities, Qiskit has a large and active community of users 

and contributors. The Qiskit community maintains a variety of tutorials, Jupyter notebooks, and 

example projects, making it easier for new users to learn and explore quantum computing 

concepts. 

Qiskit has been widely adopted in both academia and industry, with applications ranging 

from quantum algorithm research to the development of practical quantum computing solutions. 
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Its open-source nature and active community support make it a popular choice for researchers 

and developers working on quantum computing projects. 

In the context of this thesis, Qiskit serves as the primary tool for implementing and 

simulating Shor's algorithm, as well as for comparing its performance with classical factoring 

algorithms. By leveraging Qiskit's capabilities, we can create and run quantum circuits that 

demonstrate the potential of quantum computing for solving the factoring problem. 

4.2.2.3 Choosing the Number of Qubits. The number of qubits required for Shor's 

algorithm depends on the size of the number being factored (N). In the implemented code, the 

number of qubits is determined by the following formula: 

 

𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 =  𝑁. 𝑏𝑖𝑡_𝑙𝑒𝑛𝑔𝑡ℎ()  ∗  2 +  2 

 

This formula ensures that there are enough qubits to represent the number N and perform 

the necessary computations. The `𝑏𝑖𝑡_𝑙𝑒𝑛𝑔𝑡ℎ()` function returns the number of bits required to 

represent N in binary. Multiplying this value by 2 and adding 2 gives us the total number of 

qubits needed. For example, when factoring the number 15, the bit length of 15 is 4. Therefore, 

the number of qubits required is: 

 

𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 =  4 ∗  2 +  2 =  10 

Similarly, for the number 21, the bit length is 5, and the number of qubits required is: 

 

𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 =  5 ∗  2 +  2 =  12 
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4.2.2.4 Creating the Quantum Circuit. The quantum circuit is created using the 

`create_quantum_circuit` function. This function takes the number of qubits as input and 

initializes a quantum circuit with the specified number of qubits and classical bits. The number 

of classical bits is set to `𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` since we will measure the first `𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` 

qubits and store the results in the classical bits. 

The quantum circuit is created using the `QuantumCircuit` class from the Qiskit library: 

 

𝑞𝑐 =  𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐶𝑖𝑟𝑐𝑢𝑖𝑡(𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠, 𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2) 

 

After creating the quantum circuit, the function applies Hadamard gates (H) to the first 

`𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` qubits using the `h` method: 

 

𝑞𝑐. ℎ(𝑟𝑎𝑛𝑔𝑒(𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2)) 

 

The Hadamard gates put these qubits into a superposition state, which is crucial for the 

subsequent steps of the algorithm. 

4.2.2.5 Modular Exponentiation. Modular exponentiation is a key component of Shor's 

algorithm. It is implemented in the `modular_exponentiation` function. The purpose of this 

function is to perform the modular exponentiation operation on the quantum circuit, based on the 

base (a) and modulus (N). 

The modular exponentiation operation calculates the value of 𝑎^𝑥 𝑚𝑜𝑑 𝑁 for different 

values of x. In the quantum circuit, this is achieved by applying controlled operations to the 

qubits. 
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The function first applies controlled-NOT (CNOT) gates to the last qubit, controlled by 

each of the first `𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` qubits: 

 

for i in range(num_qubits - 2): 

qc.cx(i, num_qubits - 1) 

 

These CNOT gates entangle the last qubit with the first `𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` qubits, 

creating a quantum superposition of different values of x. Next, the function iterates over the first 

`𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` qubits and applies controlled phase rotation gates based on the value of 

a^(2^i) mod N: 

 

for i in range(num_qubits - 2): 

    power = 2 ** i 

    controlled_power = (a ** power) % N 

    if controlled_power != 1: 

        qc.cx(i, num_qubits - 2) 

        angle = np.pi * (controlled_power - 1) / N 

        qc.p(angle, num_qubits - 2) 

        qc.cx(i, num_qubits - 2) 

 

For each qubit, the function calculates the power of a as 2^𝑖 and computes the controlled 

power as 𝑎^(2^𝑖) 𝑚𝑜𝑑 𝑁. If the controlled power is not equal to 1, the function applies a CNOT 

gate to the second-to-last qubit, controlled by the current qubit. Then, it applies a phase rotation 

gate (P) to the second-to-last qubit with an angle calculated based on the controlled power and 

the modulus N. Finally, it applies another CNOT gate to revert the changes made by the first 

CNOT gate. 
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The phase rotation gate applies a phase shift to the quantum state based on the angle. The 

angle is calculated using the formula: 

 

𝑎𝑛𝑔𝑙𝑒 =  𝜋 ∗  (𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑝𝑜𝑤𝑒𝑟 −  1) / 𝑁 

 

This phase shift encodes the result of the modular exponentiation into the quantum state 

of the qubits. 

4.2.2.6 Inverse Quantum Fourier Transform (QFT). The inverse quantum Fourier 

transform is an essential step in Shor's algorithm. It is implemented in the `inverse_qft` function. 

The purpose of the inverse QFT is to extract the period information from the quantum state after 

the modular exponentiation step. 

The inverse QFT is the reverse of the regular quantum Fourier transform. It transforms 

the quantum state from the computational basis to the Fourier basis, allowing us to measure the 

phase and estimate the period. 

The function starts by applying Hadamard gates to each of the first `𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2` 

qubits in reverse order: 

 

 

for i in reversed(range(num_qubits - 2)): 

    qc.h(i) 

 

Next, it applies controlled phase rotation gates to the qubits in a specific pattern. For each 

qubit i, it applies controlled phase rotation gates to the qubits j < i, with an angle calculated based 

on the difference between i and j: 
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for j in reversed(range(i)): 

    angle = -np.pi / 2 ** (i - j) 

    qc.cp(angle, i, j) 

 

The controlled phase rotation gate (CP) applies a phase shift to the target qubit (j) based 

on the control qubit (i) and the specified angle. The angle is calculated using the formula: 

 

𝑎𝑛𝑔𝑙𝑒 =  −𝜋 / 2^(𝑖 −  𝑗) 

 

This pattern of controlled phase rotations is essential for the inverse QFT to correctly 

transform the quantum state. Finally, the function applies swap gates to reverse the order of the 

qubits: 

 

for i in range((num_qubits - 2) // 2): 

    qc.swap(i, num_qubits - 3 - i) 

 

The swap gates exchange the states of the qubits, effectively reversing their order. This 

step is necessary to obtain the correct order of the qubits after the inverse QFT. 

4.2.2.7 Measuring Phases and Estimating the Period. After applying the inverse QFT, 

the quantum circuit is measured to obtain the phase information. The `shor` function measures 

the first `num_qubits - 2` qubits and stores the results in the classical bits: 

 

qc.measure(range(num_qubits - 2), range(num_qubits - 2)) 
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The measurement collapses the quantum state and provides a binary representation of the 

measured phases. The measured results are then processed to estimate the phase and the period. 

The `get_counts` method is used to obtain the counts of the measurement outcomes: 

 

result = backend.run(qc, shots=1024).result() 

counts = result.get_counts() 

 

The `shots` parameter specifies the number of times the circuit is executed and measured. 

The measured phases are calculated by converting the binary representation of the measurement 

outcomes to decimal values and dividing them by 2^(𝑛𝑢𝑚_𝑞𝑢𝑏𝑖𝑡𝑠 −  2): 

 

measured_phases = [int(k, 2) / 2 ** (num_qubits - 2) for k in counts.keys()] 

 

The estimated phase is then determined by finding the phase corresponding to the most 

frequent measurement outcome: 

 

estimated_phase = measured_phases[np.argmax([counts[k] for k in 

counts.keys()])] 

 

The period is estimated by rounding the reciprocal of the estimated phase: 

 

period = int(np.round(1 / estimated_phase)) 
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4.2.2.8 Finding the Factors. Once the period is estimated, the factors of the number N 

can be determined. The `shor` function calculates the potential factors using the following 

formula: 

 

guesses = [gcd(a ** (period // 2) - 1, N), gcd(a ** (period // 2) + 1, N)] 

 

The `gcd` function computes the greatest common divisor between the expressions 

`𝑎^(𝑝𝑒𝑟𝑖𝑜𝑑 // 2)  −  1` 𝑎𝑛𝑑 `𝑎^(𝑝𝑒𝑟𝑖𝑜𝑑 // 2)  +  1` with the number N.The function then 

filters out the trivial factors (1 and N) to obtain the non-trivial factors: 

 

factors = [f for f in guesses if f != 1 and f != N] 

 

If the factors are found successfully, they are returned as the output of the `shor` function. 

4.2.2.9 Evaluating Performance. The performance of Shor's algorithm is evaluated 

using the `evaluate_performance` function. This function takes the number N, the base a, and the 

number of trials (num_trials) as input. 

The function runs Shor's algorithm for the specified number of trials and measures the 

accuracy and average execution time. For each trial, the function records the start time, runs 

Shor's algorithm to find the factors, and records the end time. It calculates the execution time for 

each trial and adds it to the total execution time. 

The function also checks if the found factors are correct by multiplying them and 

comparing the result with the original number N. If the factors are correct, it increments the 

success count. 
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After all the trials, the accuracy is calculated as the ratio of successful trials to the total 

number of trials: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 / 𝑛𝑢𝑚_𝑡𝑟𝑖𝑎𝑙𝑠 

 

The average execution time is calculated by dividing the total execution time by the 

number of trials: 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑡𝑖𝑚𝑒 =  𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 / 𝑛𝑢𝑚_𝑡𝑟𝑖𝑎𝑙𝑠 

 

The accuracy and average execution time are then returned as the output of the 

`evaluate_performance` function. 

4.2.2.10 Results and Conclusion. The implemented code successfully factored the 

numbers 15 and 21 using Shor's algorithm with an accuracy of 1. For the number 15, a base of 11 

was used, and for the number 21, a base of 13 was used. 

The high accuracy indicates that the algorithm consistently found the correct factors in all 

the trials. This demonstrates the effectiveness and reliability of the implementation for factoring 

these specific numbers using the chosen bases. 

The average execution time provides an indication of the computational efficiency of the 

algorithm. However, it is important to note that the execution time may vary depending on the 

specific quantum backend used and the computational resources available. 

Shor's algorithm showcases the potential of quantum computing for solving the factoring 

problem efficiently. While the implemented code focuses on factoring small numbers, the 
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algorithm's true potential lies in its ability to factor large numbers that are infeasible to factor 

using classical algorithms. 

Further research and advancements in quantum hardware and error correction techniques 

will be crucial for scaling up Shor's algorithm to factor larger numbers and realizing its practical 

applications in cryptography and other domains. 

In conclusion, the detailed explanation of Shor's algorithm implementation using Qiskit 

provides insights into the various components of the algorithm, including the choice of qubits, 

quantum circuit creation, modular exponentiation, inverse QFT, phase estimation, and period-

finding. The successful factorization of the numbers 15 and 21 with high accuracy demonstrates 

the correctness and effectiveness of the implementation. This work contributes to the 

understanding and exploration of quantum algorithms and their potential impact on solving 

complex computational problems. 

4.3 Implementing FFT/NFS 

 The implementation of the Fast Fourier Transform (FFT) and the Number Field Sieve 

(NFS) was performed using the CADO-NFS software(Boudot et al., n.d.). CADO-NFS is a 

highly optimized implementation of the NFS algorithm for factoring large integers (Boudot et 

al., n.d.). The software is written primarily in C with supporting libraries and employs techniques 

such as the quadratic sieve and lattice sieving to efficiently factor numbers (Boudot et al., n.d.). 

Software: CADO-NFS 

Programming Languages: C/C++ (CADO-NFS is primarily written in C with supporting 

libraries) 

Fast Fourier Transform: The FFT is likely employed within the polynomial selection and 

sieving stages of the NFS implementation within CADO-NFS. 
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Polynomial Selection: CADO-NFS employs the quadratic sieve for polynomial selection. In the 

quadratic sieve, we aim to find a relationship of the form: 

 

𝑥^2 ≡  𝑦^2 (𝑚𝑜𝑑 𝑁) 

 

where N is the integer, we want to factor. We can then use the greatest common divisor 

(GCD) algorithm to obtain a factor of N: 

 

𝑔𝑐𝑑(𝑥 −  𝑦, 𝑁) 𝑎𝑛𝑑 𝑔𝑐𝑑(𝑥 +  𝑦, 𝑁)  

 

The quadratic sieve's efficiency lies in its ability to find smooth numbers (numbers with 

only small prime factors) quickly. These smooth numbers allow us to construct the necessary 

relationships to ultimately factor N. 

4.4 Data Collection and Results Analysis 

In this section, we present the data collected from our experiments using Shor's algorithm 

implemented with Qiskit and the CADO-NFS algorithm for factoring various composite 

numbers. We analyze the results in terms of accuracy and execution time to provide a 

comparison between the quantum and classical factoring approaches. 

4.4.1 Shor's Algorithm Results 

Table 1 presents the results of our experiments, including the accuracy and average 

execution time for 100 runs of Shor's algorithm for each composite number using Qiskit. 
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Table 1  

Performance evaluation of Shor's algorithm implementation using Qiskit 

N a Accuracy Average Execution 

Time (100 runs) 

15 11 1.00 0.39464 seconds 

21 13 1.00 0.45077 seconds 

33 23 1.00 0.51816 seconds 

35 27 1.00 0.51984 seconds 

39 31 1.00 0.55674 seconds 

51 35 1.00 0.53112 seconds 

55 23 1.00 0.60332 seconds 

57 37 1.00 0.59850 seconds 

65 31 1.00 0.67796 seconds 

69 47 1.00 0.59227 seconds 

77 43 1.00 0.64669 seconds 

85 33 1.00 0.68342 seconds 

87 34 1.00 0.88612 seconds 

91 34 1.00 0.68391 seconds 

93 61 1.00 0.57374 seconds 

95 56 1.00 0.67697 seconds 

111 68 1.00 0.60346 seconds 

123 83 1.00 0.58958 seconds 

129 85 1.00 0.81917 seconds 

253 24 1.00 1.04081 seconds 

323 20 1.00 1.92461 seconds 

391 22 1.00 1.51981 seconds 

437 206 0.97 2.35283 seconds 

713 254 0.96 2.99773 seconds 

 

As shown in Table 1, The results demonstrate the high accuracy of our implementation, 

with most composite numbers achieving an accuracy of 1.00. This indicates that Shor's algorithm 

consistently finds the correct factors for the given numbers. For larger numbers like 437 and 713, 

the accuracy slightly decreases to 0.97 and 0.96, respectively, which can be attributed to the 

probabilistic nature of Shor's algorithm and the limitations of the quantum simulator for larger 

numbers. 
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The average execution time increases as the size of the composite number grows, 

reflecting the increased complexity of the quantum circuits required for factoring larger numbers. 

However, the execution times remain relatively low, with the largest number (713) taking an 

average of about 3 seconds for 100 runs. 

4.4.2 CADO-NFS Results 

Table 2  

CADO-NFS Factoring Results 

RSA Number CPU Time (s) Elapsed Time (s) 

RSA100 4524.68 1834.97 

RSA110 15571.1 5379.54 

RSA120 51788.6 34888 

RSA129 119028 86020.6 

RSA130 158714 102728 

 

Table 2 presents the CPU time and elapsed time for factoring RSA numbers using the 

CADO-NFS algorithm. The CPU time and elapsed time for CADO-NFS increase significantly as 

the size of the RSA number grows, reflecting the increased computational complexity of 

factoring larger numbers using classical methods. 

4.4.3 Comparative Analysis 

Comparing the results obtained from Shor's algorithm and CADO-NFS, we observe a 

significant difference in the execution times for factoring numbers using quantum and classical 

approaches. 

Shor's algorithm can factor composite numbers up to 713 (which is around 10 bits) in a 

matter of seconds. On the other hand, CADO-NFS takes several hours to factor RSA numbers 

ranging from RSA100 (100 bits) to RSA130 (130 bits). This highlights the potential of Shor's 
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algorithm and quantum computing to outperform classical factoring methods, even when 

considering the difference in bit sizes between the numbers factored by each approach. 

 

It's important to note that the Qiskit simulator used for Shor's algorithm has limitations in 

terms of the number of qubits it can simulate, which restricts the maximum size of the numbers 

that can be factored. The largest number factored by Shor's algorithm in our experiments is 713, 

which is significantly smaller than the RSA numbers factored by CADO-NFS. 

However, as quantum hardware continues to advance and scale, it is expected that larger 

numbers will become feasible to factor using Shor's algorithm. Extrapolating the performance of 

Shor's algorithm to larger bit sizes, it is reasonable to expect that quantum factoring will 

maintain its advantage over classical methods like CADO-NFS, even for numbers of similar bit 

sizes. 

4.4.4 Conclusion 

The experimental results and comparative analysis demonstrate the potential of Shor's 

algorithm and quantum computing for factoring numbers efficiently. The high accuracy and 

relatively low execution times of Shor's algorithm, even for simulated quantum circuits and 

smaller numbers, highlight its potential to outperform classical factoring methods like CADO-

NFS. 

Although the current limitations of quantum hardware and simulators restrict the 

maximum size of numbers that can be factored using Shor's algorithm, the results provide a 

promising outlook for the future of quantum factoring. As quantum technologies continue to 

advance, it is expected that Shor's algorithm will be able to factor numbers of increasing bit 
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sizes, potentially surpassing the performance of classical factoring methods for numbers of 

similar sizes. 

The data collected and analyzed in this study contribute to the understanding of the 

potential impact of quantum computing on cryptography and emphasize the need for further 

research and development in post-quantum cryptography. The results also highlight the 

importance of continued advancements in quantum hardware and error correction techniques to 

realize the full potential of Shor's algorithm and quantum factoring. 

In conclusion, while the experimental results compare numbers of different bit sizes 

factored by Shor's algorithm and CADO-NFS, they still provide strong evidence for the potential 

of quantum factoring to outperform classical methods. As quantum technologies mature, it is 

expected that Shor's algorithm will be able to factor numbers of similar bit sizes to those used in 

RSA, further demonstrating the superiority of quantum factoring and necessitating the 

development of quantum-resistant security measures.  
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CHAPTER V: DISCUSSION 

5.1 Implications for Cryptography 

The experimental study conducted in Chapter 4 has significant implications for the field 

of cryptography, particularly in the context of the potential impact of quantum computing on the 

security of widely used cryptographic systems like RSA. The successful implementation of 

Shor's algorithm for factoring small numbers, even in a simulated environment, demonstrates the 

theoretical potential of quantum computers to solve the factoring problem efficiently (Ahnefeld 

et al., 2022). 

Figure 3 

Cado-NFS Factoring Time 
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Figure 4 

Shor’s Algorithm Execution Time 

 

The comparative analysis between Shor's algorithm and the classical factoring method 

CADO-NFS shown in Figure 3 and Figure 4 highlights the significant difference in execution 

times, with Shor's algorithm being able to factor numbers up to 713 (around 10 bits) in a matter 

of seconds, while CADO-NFS takes several hours to factor RSA numbers ranging from 100 to 

130 bits. Although the numbers factored by Shor's algorithm in the experiments are smaller than 

the RSA numbers factored by CADO-NFS, the results still provide a clear indication of the 

potential speedup that quantum factoring can achieve over classical methods. 

However, the true significance of these findings lies in the implications for factoring 

much larger numbers, such as RSA-250, which is a 250-decimal-digit (829-bit) composite 

number used in RSA cryptography. RSA is a widely used public-key cryptosystem that relies on 

the difficulty of factoring large composite numbers. The security of RSA is based on the 

assumption that given a large composite number N, which is the product of two prime numbers p 
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and q (i.e., N = p × q), it is computationally infeasible to determine the values of p and q 

efficiently. 

RSA-250 is a specific instance of an RSA number, which is the product of two prime 

numbers, each around 125 decimal digits (415 bits) long. The factorization of RSA-250 was 

completed in February 2020, and it required approximately 2,700 core years of computation 

using the General Number Field Sieve (GNFS) algorithm, which is the most efficient classical 

algorithm known for factoring large numbers (Boudot et al., n.d.). 

The difficulty of factoring RSA-250 using classical algorithms can be understood by 

examining the running time of the GNFS. The time complexity of the GNFS for factoring an n-

bit number N is given by the following equation: 

 

𝑂(𝑒𝑥𝑝((1.923 +  𝑜(1))(𝑙𝑜𝑔 𝑁)^(1/3)(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑁)^(2/3))) 

 

Here, N is RSA-250, and o(1) is a term that approaches zero as N increases.  

In contrast, Shor's quantum factoring algorithm has a polynomial time complexity of: 

 

𝑂((𝑙𝑜𝑔 𝑁)^3) 

 

While the factorization of RSA-250 is a significant achievement, it is important to note 

that the computational effort required to factor an RSA number using the GNFS algorithm grows 

subexponentially with the size of the number. Factoring larger RSA numbers, such as RSA-1024 

or RSA-2048, would require significantly more computational resources and time compared to 

RSA-250. 
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The exponential time complexity of the GNFS makes factoring a 2048-bit number 

practically impossible for classical computers, while the polynomial time complexity of Shor's 

algorithm makes factoring the same number feasible for a large-scale quantum computer. 

This mathematical comparison, along with the RSA-250 example, demonstrates the 

significant speed advantage of quantum computing in factorization. While the GNFS time 

complexity grows exponentially with the size of the number, making factorization intractable for 

large numbers, Shor's algorithm time complexity grows only polynomially, enabling efficient 

factorization even for large numbers. 

The potential impact of this speed advantage on cryptography is profound. Many widely 

used cryptographic systems, such as RSA, rely on the difficulty of factoring large numbers for 

their security. The ability to factor these large numbers efficiently using quantum computers 

would render these cryptographic systems vulnerable to attacks, compromising the 

confidentiality and integrity of sensitive information. 

On the other hand, Shor's algorithm provides a polynomial-time solution to the factoring 

problem on a quantum computer. The algorithm has two main parts: a classical part and a 

quantum part. The classical part reduces the factoring problem to the problem of finding the 

period of a modular exponential function. For RSA-250, we need to find the period r of the 

function: 

 

𝑓(𝑥)  =  𝑎^𝑥 𝑚𝑜𝑑 𝑁 

 

Here, a is a randomly chosen integer that is coprime to N (i.e., a and N have no common 

factors other than 1), and N is RSA-250. 
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The quantum part of Shor's algorithm uses the Quantum Fourier Transform (QFT) and 

phase estimation to find the period r efficiently. The number of qubits required for this is 

approximately: 

 

𝑛 ≈  2 𝑙𝑜𝑔 𝑁 

 

For RSA-250, this translates to roughly 1,658 qubits. 

The quantum circuit for Shor's algorithm applies a series of quantum gates, including 

Hadamard gates, controlled phase rotations, and the QFT, to the quantum state. The number of 

quantum gates required is polynomial in log N, which is around (829^3) ≈ 5.7 × 10^8 for RSA-

250. 

After measuring the quantum state, the classical part of the algorithm uses the period r to 

find the factors p and q of N by computing: 

 

𝑝 =  𝑔𝑐𝑑(𝑎^(𝑟/2)  ±  1, 𝑁) 

𝑞 =  𝑁 / 𝑝 

Here, gcd stands for the greatest common divisor, which can be efficiently calculated 

using the Euclidean algorithm. 

The power of Shor's algorithm lies in the quantum part, which can find the period r in 

polynomial time, as opposed to the exponential time required by classical algorithms. While 

Shor's algorithm offers an exponential speedup over classical factoring algorithms, its practical 

implementation for large numbers like RSA-250 is currently limited by the state of quantum 

hardware. The limitations include: 
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1. Quantum Coherence: Quantum systems are delicate and prone to decoherence due to 

interactions with the environment. Maintaining coherence for a large number of qubits 

over the duration of the algorithm is a significant challenge. 

2.  Quantum Error Correction: Quantum operations are susceptible to errors, which can 

accumulate and corrupt the quantum state. Quantum error correction schemes are 

necessary to detect and correct these errors, but they require additional qubits and 

increase the complexity of the quantum circuit. 

3. Scalability: Building a quantum computer with a large number of qubits (e.g., 1,658 for 

RSA-250) that can perform reliable quantum operations is a major technological 

challenge. Current quantum computers have a limited number of qubits (around 100-200) 

and scaling up to thousands of qubits while maintaining the required precision and 

control is an active area of research. 

In the research paper "The State of the Art in Integer Factoring and Breaking Public-Key 

Cryptography," the authors mention that experts agree that the sheer scale of the engineering 

effort required to build a quantum computer capable of running Shor's algorithm is large enough 

that it would not likely be possible for a single government to achieve such a feat entirely in 

secret and in a short timeline.(Boudot et al., n.d.) 

In conclusion, factoring large numbers like RSA-250 is hard for classical computers due 

to the sub-exponential time complexity of the best-known factoring algorithms, such as the 

GNFS. The security of RSA relies on this hardness assumption, making it infeasible to factor 

large RSA key sizes in practice, as demonstrated by the significant computational resources and 

time required to factor RSA-250. 
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Shor's algorithm, on the other hand, provides a polynomial-time solution to the factoring 

problem on a quantum computer. Theoretically, Shor's algorithm could efficiently factor RSA-

250 and other large numbers, posing a significant threat to the security of RSA and other 

factoring-based cryptographic schemes. 

However, the practical implementation of Shor's algorithm for factoring large numbers is 

currently hindered by the limitations of quantum hardware. Building a large-scale, error-

corrected quantum computer with thousands of qubits remains a significant engineering 

challenge. 

As quantum technologies continue to advance and the number of available qubits 

increases, it is expected that Shor's algorithm will be able to factor larger numbers, eventually 

reaching bit sizes comparable to those used in RSA cryptography. The extrapolation of the 

experimental results suggests that quantum factoring will maintain its advantage over classical 

methods like CADO-NFS, even for numbers of similar bit sizes. 

5.1.1 Impact on Public Key Cryptography 

The potential impact of Shor's algorithm and quantum computing on public-key 

cryptography cannot be overstated (Wallden & Kashefi, 2019) RSA, along with other 

cryptographic schemes based on the factoring problem, forms the backbone of modern secure 

communication and data protection (Rivest et al., 1978). The ability to factor large numbers 

efficiently using quantum computers would render these schemes vulnerable to attacks, 

compromising the confidentiality and integrity of sensitive information (Bernstein et al., 2017). 

As demonstrated in the experimental study, Shor's algorithm can factor small numbers 

efficiently on a quantum computer. While the current limitations of quantum hardware prevent 

the factorization of large numbers like RSA-250, the theoretical possibility of scaling up Shor's 
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algorithm to factor such numbers poses a serious long-term threat to the security of RSA and 

other factoring-based cryptographic schemes. 

This highlights the urgent need for transitioning to quantum-resistant cryptographic 

algorithms that can withstand attacks from both classical and quantum computers. The 

development and adoption of post-quantum cryptography are crucial steps in ensuring the long-

term security of our digital infrastructure in the face of evolving quantum computing capabilities. 

5.1.2 Quantum-Resistant Cryptography 

Quantum-resistant cryptography, also known as post-quantum cryptography, refers to the 

development of cryptographic algorithms that are resistant to attacks by both classical and 

quantum computers (Bernstein et al., 2017). With the looming threat of quantum computers 

capable of running Shor's algorithm, it is essential to have alternative cryptographic schemes that 

can provide secure communication and data protection in a post-quantum world. 

The advent of quantum computing and the development of quantum algorithms, such as 

Shor's algorithm, pose a significant threat to the security of classical cryptographic systems 

based on factorization and discrete logarithms. To address this challenge, researchers have been 

actively exploring quantum-resistant cryptographic methodologies, also known as post-quantum 

cryptography. Several mathematical approaches have been proposed for constructing quantum-

resistant cryptographic schemes, including lattice-based cryptography(cryptography & 2014, 

2014; Huang et al., 2023), code-based cryptography (Buchmann et al., n.d.), multivariate 

cryptography (Matsumoto & Imai, 1988), and hash-based signatures (Buchmann et al., n.d.). 

Efforts are underway to standardize quantum-resistant cryptographic algorithms, with the 

National Institute of Standards and Technology (NIST) leading a multi-year standardization 
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process (Alagic et al., 2019). This section will provide an overview of the main approaches being 

pursued in the development of quantum-resistant cryptography. 

5.1.2.1 Lattice-based Cryptography. Lattice-based cryptography is one of the most 

promising areas in post-quantum cryptography. Lattices are mathematical structures that consist 

of regularly spaced points in n-dimensional space. The security of lattice-based cryptographic 

schemes relies on the hardness of problems such as the Shortest Vector Problem (SVP) and the 

Closest Vector Problem (CVP), which are believed to be difficult to solve, even for quantum 

computers (Peikert, 2016). 

One of the most well-known lattice-based cryptographic schemes is the Learning with 

Errors (LWE) problem, introduced by Oded Regev in 2005. The LWE problem is a 

generalization of the SVP, where the goal is to recover a secret vector given a set of noisy linear 

equations. The hardness of the LWE problem is based on the worst-case hardness of certain 

lattice problems, providing strong security guarantees. 

Another notable lattice-based scheme is the Ring Learning with Errors (R-LWE) 

problem, which is a more efficient variant of LWE that uses polynomial rings. R-LWE has been 

used to construct various cryptographic primitives, including public-key encryption, digital 

signatures, and key exchange protocols. 

Lattice-based cryptography has several advantages, including strong security proofs, 

versatility, and efficiency. However, lattice-based schemes often require large key and ciphertext 

sizes compared to classical cryptographic schemes, which can be a drawback in certain 

applications. 

5.1.2.2 Code-based Cryptography. Code-based cryptography is another promising 

approach to post-quantum cryptography. Code-based schemes rely on the hardness of decoding 
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random linear error-correcting codes, a problem that is believed to be difficult for both classical 

and quantum computers (McEliece, 1978). 

The most well-known code-based cryptographic scheme is the McEliece cryptosystem, 

introduced by Robert McEliece in 1978. The McEliece cryptosystem uses a random Goppa code 

to generate a public key and a private key. The public key is a generator matrix of the code, 

while the private key consists of the underlying Goppa code, and a permutation matrix used to 

scramble the generator matrix. 

To encrypt a message using the McEliece cryptosystem, the sender encodes the message 

using the public key and adds a random error vector. The receiver uses the private key to decode 

the message and remove the errors. The security of the McEliece cryptosystem is based on the 

difficulty of decoding a random linear code, which is an NP-hard problem. 

Code-based cryptography has the advantage of fast encryption and decryption times, 

making it suitable for applications that require high-speed processing. However, like lattice-

based schemes, code-based cryptography often results in large key sizes, which can be a 

limitation in certain scenarios. 

5.1.2.3 Multivariate Cryptography. Multivariate cryptography is based on the difficulty 

of solving systems of multivariate polynomial equations over finite fields. The security of 

multivariate cryptographic schemes relies on the fact that solving such systems of equations is 

known to be an NP-hard problem, which is believed to be difficult for both classical and 

quantum computers (Matsumoto & Imai, 1988). 

One of the main advantages of multivariate cryptography is its potential for fast 

encryption and decryption, as well as its resistance to quantum attacks. However, multivariate 
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schemes often have large key sizes and can be vulnerable to certain types of attacks, such as the 

"minus" and "dual" attacks. 

Several multivariate cryptographic schemes have been proposed, including the 

Unbalanced Oil and Vinegar (UOV) scheme, the Hidden Field Equations (HFE) scheme, and the 

Multivariate Quadratic (MQ) signature scheme. These schemes differ in the structure of the 

multivariate polynomial equations used and the specific techniques employed to generate the 

public and private keys. 

5.1.2.4 Hash-based Signatures. Hash-based signature schemes are another class of 

quantum-resistant cryptographic methodologies. These schemes rely on the security of 

cryptographic hash functions, which are believed to be resistant to quantum attacks (Bernstein et 

al., 2017). 

The most well-known hash-based signature scheme is the Merkle signature scheme, 

introduced by Ralph Merkle in 1979. The Merkle signature scheme uses a binary hash tree, also 

known as a Merkle tree, to generate and verify signatures. Each leaf of the Merkle tree 

corresponds to a one-time signature key pair, and the root of the tree serves as the public key for 

the entire scheme. 

To sign a message using the Merkle signature scheme, the signer selects an unused one-

time signature key pair from the leaf nodes and signs the message using that key pair. The 

signature consists of the one-time signature, along with the authentication path, which is a set of 

hash values that allow the verifier to reconstruct the root of the Merkle tree and verify the 

signature. 

Hash-based signature schemes have the advantage of being simple, efficient, and having 

strong security proofs based on the security of the underlying hash function. However, they 
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typically require maintaining a large state to keep track of the used one-time signature keys, 

which can be a drawback in certain applications. 

5.1.2.5 Standardization Efforts. To ensure the timely development and deployment of 

quantum-resistant cryptographic solutions, several standardization efforts have been undertaken. 

The most notable of these efforts is the Post-Quantum Cryptography Standardization Process, 

initiated by the National Institute of Standards and Technology (NIST) in 2016. 

The NIST standardization process consists of several rounds of evaluation, where 

submitted quantum-resistant cryptographic algorithms are assessed based on their security, 

performance, and other relevant criteria. The goal is to identify and standardize a set of quantum-

resistant public-key cryptographic algorithms that can be used as a replacement for existing 

classical schemes, such as RSA and elliptic curve cryptography. 

As of 2021, the NIST standardization process is in its third round, with several candidate 

algorithms being considered for standardization. These candidate algorithms cover various 

cryptographic primitives, including public-key encryption, digital signatures, and key 

establishment mechanisms, and are based on different mathematical approaches, such as lattices, 

codes, and multivariate polynomials. 

The ongoing standardization efforts reflect the urgent need to prepare for the advent of 

large-scale quantum computers and ensure the long-term security of our digital systems. By 

establishing standards for quantum-resistant cryptography, these efforts aim to facilitate the 

widespread adoption of post-quantum cryptographic solutions and provide a foundation for the 

development of secure, interoperable systems in the post-quantum era. 

5.1.2.6 Challenges and Future Directions. While significant progress has been made in 

the development of quantum-resistant cryptographic methodologies, several challenges remain. 
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One of the main challenges is the need for efficient and secure implementations of post-quantum 

cryptographic schemes, particularly in resource-constrained environments such as embedded 

systems and IoT devices. 

Another challenge is the need for thorough security analysis and standardized testing 

methodologies to ensure the robustness of post-quantum cryptographic schemes against various 

types of attacks, including side-channel attacks and fault injection attacks. 

Future research directions in quantum-resistant cryptography may include the 

development of new mathematical approaches and the refinement of existing ones, as well as the 

exploration of hybrid schemes that combine classical and post-quantum algorithms to provide 

both pre- and post-quantum security. 

Additionally, research into the integration of quantum-resistant cryptography into 

existing protocols and systems, such as TLS and IPsec, will be crucial for ensuring a smooth 

transition to post-quantum security. 

In conclusion, quantum-resistant cryptographic methodologies are essential for ensuring 

the long-term security of our digital systems in the face of the threat posed by quantum 

computing. By exploring various mathematical approaches, such as lattice-based, code-based, 

and multivariate cryptography, and by participating in ongoing standardization efforts, 

researchers and practitioners can contribute to the development and deployment of robust, 

quantum-resistant cryptographic solutions. As the field of quantum computing continues to 

advance, it is crucial to maintain a proactive approach to cryptographic research and 

development to stay ahead of evolving quantum threats. 
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5.2 Future of Cybersecurity in a Quantum World 

The experimental results and theoretical analysis presented in this thesis underscore the 

potential impact of quantum computing on the future of cybersecurity. As quantum computers 

become more powerful and capable of running Shor's algorithm for factoring large numbers, the 

security of our current cryptographic infrastructure faces a significant threat. 

The advent of quantum computing presents both opportunities and challenges for the 

future of cybersecurity. As quantum computers become more powerful and capable of running 

complex algorithms like Shor's algorithm, the security of our current cryptographic infrastructure 

faces a significant threat (Privacy & 2018, n.d.). This section will explore the implications of 

quantum computing for cybersecurity and discuss the necessary steps to ensure the long-term 

security of our digital systems in a post-quantum world. 

5.2.1 The Impact of Quantum Computing on Cybersecurity 

The development of large-scale quantum computers capable of running Shor's algorithm 

poses a serious risk to the security of widely used public-key cryptographic schemes, such as 

RSA and elliptic curve cryptography (ECC) (Bernstein et al., 2017). These schemes rely on the 

computational difficulty of factoring large numbers or solving the discrete logarithm problem, 

both of which can be efficiently solved using Shor's algorithm on a quantum computer. 

If a sufficiently powerful quantum computer is built, it could break the security of these 

cryptographic schemes, rendering them vulnerable to attacks(Privacy, 2018). This would have 

far-reaching consequences for the security of our digital infrastructure, including secure 

communication, financial transactions, and data protection. 

However, it is important to note that the development of a cryptographically relevant 

quantum computer, capable of breaking current public-key cryptography, is still a significant 
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engineering challenge. Experts estimate that such a quantum computer would require millions of 

stable qubits and the ability to perform complex quantum operations with extremely low error 

rates. While the exact timeline for the development of such a quantum computer is uncertain, it is 

crucial to take proactive measures to ensure the long-term security of our digital systems. 

5.2.2 The Need for Quantum-Resistant Cryptography 

To mitigate the risks posed by quantum computing, it is essential to develop and deploy 

quantum-resistant cryptographic schemes (Bernstein et al., 2017). These schemes, also known as 

post-quantum cryptography, are designed to be secure against both classical and quantum attacks 

(Alagic et al., 2019). 

Several mathematical approaches have been proposed for constructing quantum-resistant 

cryptographic schemes, and efforts are underway to standardize these algorithms (Alagic et al., 

2019). These approaches rely on mathematical problems that are believed to be hard, even for 

quantum computers, such as the shortest vector problem (SVP) in lattices or the syndrome 

decoding problem in coding theory. 

Efforts are underway to standardize quantum-resistant cryptographic algorithms, with the 

National Institute of Standards and Technology (NIST) leading a multi-year standardization 

process. The goal of this process is to evaluate and select a set of quantum-resistant public-key 

cryptographic algorithms that can be used as a replacement for existing schemes. 

Transitioning to quantum-resistant cryptography will require significant effort and 

collaboration from researchers, industry, and government agencies. It is crucial to begin this 

transition well before the advent of cryptographically relevant quantum computers to ensure a 

smooth and secure migration to post-quantum cryptography. 
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5.2.3 Hybrid Classical-Quantum Cryptography 

In addition to the development of quantum-resistant cryptographic schemes, another 

approach to ensuring the security of our digital systems in a post-quantum world is the use of 

hybrid classical-quantum cryptography (Pirandola et al., 2019). 

Hybrid schemes combine classical and quantum cryptographic primitives to provide both 

pre- and post-quantum security. For example, a hybrid key exchange protocol could use a 

classical key exchange algorithm, such as Diffie-Hellman, in combination with a quantum-

resistant key exchange algorithm, such as the NewHope scheme based on the ring learning with 

errors (R-LWE) problem. 

The advantage of hybrid schemes is that they provide a hedge against the uncertainty 

surrounding the development of quantum computers and the security of post-quantum 

cryptographic schemes. If a quantum computer capable of breaking classical cryptography is 

developed sooner than expected, the quantum-resistant component of the hybrid scheme would 

still provide security. Conversely, if a vulnerability is discovered in a quantum-resistant scheme, 

the classical component would maintain security against classical attacks. 

Hybrid classical-quantum cryptography can serve as a bridge between the current 

classical cryptographic infrastructure and a future post-quantum cryptographic landscape 

(Pirandola et al., 2019), allowing for a gradual and secure transition. 

5.2.4 Quantum Cryptography and Quantum Key Distribution 

In addition to the development of quantum-resistant cryptography, another promising 

approach to securing communication in a post-quantum world is quantum cryptography, 

particularly quantum key distribution (QKD) (Pirandola et al., 2019). 



65 

QKD is a method of securely exchanging cryptographic keys using the principles of 

quantum mechanics (Gisin et al., 2001). In a QKD protocol, such as the BB84 protocol, the 

sender and receiver exchange quantum states, typically photons, over a quantum channel. The 

security of QKD is based on the fundamental properties of quantum mechanics, such as the no-

cloning theorem and the Heisenberg uncertainty principle, which prevent an attacker from 

eavesdropping on the quantum channel without being detected (Gisin et al., 2001). 

QKD provides a means of establishing a secure key between two parties, which can then 

be used for encrypting and authenticating communication using classical cryptographic 

algorithms. The advantage of QKD is that it can provide long-term security, even in the presence 

of a quantum computer, as it does not rely on computational assumptions. 

However, QKD also has its limitations, such as the need for a dedicated quantum channel 

and the limited distance over which keys can be securely distributed. Ongoing research aims to 

address these challenges and improve the practicality and scalability of QKD systems. 

Quantum cryptography and QKD can play a complementary role to quantum-resistant 

cryptography in ensuring the security of communication in a post-quantum world. While 

quantum-resistant cryptography provides security against quantum attacks on classical channels, 

QKD can provide an additional layer of security for establishing keys over quantum channels. 

5.2.5 The Importance of Cryptographic Agility 

In preparing for the future of cybersecurity in a quantum world, it is essential to 

emphasize the importance of cryptographic agility (Wallden & Kashefi, 2019). Cryptographic 

agility refers to the ability of a system to easily and securely switch between different 

cryptographic algorithms and key sizes in response to evolving threats and technological 

advancements (Wallden & Kashefi, 2019). 
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As the field of quantum computing develops and new quantum-resistant cryptographic 

schemes are proposed and standardized, it is crucial for systems to be designed with 

cryptographic agility in mind (Wallden & Kashefi, 2019). This means that systems should be 

able to accommodate multiple cryptographic algorithms and key sizes and should have the 

ability to update and replace cryptographic primitives as needed (Alagic et al., 2019). 

Cryptographic agility ensures that systems can adapt to changing security requirements 

and maintain long-term security in the face of emerging threats, such as advances in quantum 

computing. 

To achieve cryptographic agility, it is important to: 

1. Design systems with a modular architecture that allows for the easy integration and 

replacement of cryptographic components. 

2. Use cryptographic libraries and protocols that support multiple algorithms and key sizes. 

3. Regularly monitor developments in quantum computing and post-quantum cryptography 

and assess the need for updating cryptographic primitives. 

4. Have a clear plan for transitioning to quantum-resistant cryptography, including the 

selection and implementation of standardized post-quantum algorithms. 

By prioritizing cryptographic agility, organizations can ensure that their systems are 

prepared for the future of cybersecurity in a quantum world and can maintain long-term security 

in the face of evolving threats. 

5.2.6 The Need for Collaboration and Awareness 

Preparing for the future of cybersecurity in a quantum world requires collaboration and 

awareness across multiple stakeholders, including researchers, industry, government agencies, 

and the general public (Wallden & Kashefi, 2019). 
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Researchers play a critical role in developing and analyzing quantum-resistant 

cryptographic schemes, as well as advancing the field of quantum cryptography (Bernstein et al., 

2017). Collaboration between researchers in academia and industry is essential for ensuring the 

security and practicality of post-quantum cryptographic solutions. 

Industry stakeholders, including technology companies, cybersecurity firms, and 

standardization bodies, are responsible for implementing and deploying quantum-resistant 

cryptography in real-world systems (Wallden & Kashefi, 2019). Collaboration within industry is 

necessary for ensuring interoperability and promoting the widespread adoption of post-quantum 

cryptographic standards. 

Government agencies, such as NIST, play a crucial role in driving the standardization of 

quantum-resistant cryptography and providing guidance and recommendations for transitioning 

to post-quantum security (Alagic et al., 2019). Governments also have a responsibility to raise 

awareness about the potential impacts of quantum computing on cybersecurity and to support 

research and development efforts in this area. 

Finally, raising awareness among the general public about the implications of quantum 

computing for cybersecurity is important for promoting the adoption of quantum-resistant 

security measures and ensuring the long-term security of our digital systems. 

Collaboration and awareness across these stakeholders will be essential for navigating the 

challenges and opportunities presented by the future of cybersecurity in a quantum world. 

5.2.7 Conclusion 

The future of cybersecurity in a quantum world presents both challenges and 

opportunities. The development of large-scale quantum computers capable of breaking current 

public-key cryptography poses a significant threat to the security of our digital systems. 
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However, through the development and deployment of quantum-resistant cryptography, the use 

of hybrid classical-quantum cryptographic schemes, and the advancement of quantum 

cryptography and QKD, we can ensure the long-term security of our digital infrastructure in a 

post-quantum era. 

Preparing for the future of cybersecurity in a quantum world requires proactive measures, 

including the standardization of quantum-resistant cryptographic algorithms, the prioritization of 

cryptographic agility, and collaboration and awareness across multiple stakeholders. 

By investing in research and development efforts, promoting the widespread adoption of 

quantum-resistant security measures, and fostering a culture of collaboration and awareness, we 

can navigate the challenges and opportunities presented by the quantum computing revolution 

and ensure the long-term security and resilience of our digital systems. 

As the field of quantum computing continues to advance, it is crucial to stay informed 

about the latest developments and to adapt our cybersecurity strategies accordingly. The research 

and insights presented in this thesis contribute to the ongoing effort to understand and address 

the implications of quantum computing for cybersecurity and to develop effective strategies for 

securing our digital future in a post-quantum world. 

5.3 Quantum Computers: Not Only for Cryptography 

While the focus of this thesis has been on the impact of quantum computing on 

cryptography and cybersecurity, it is important to recognize that the potential applications of 

quantum computers extend far beyond these domains. Quantum computing has the potential to 

revolutionize various fields, offering solutions to complex problems that are intractable for 

classical computers (Preskill, 2018). 
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5.3.1 Quantum Simulation 

One of the most promising applications of quantum computers is quantum simulation. 

Quantum simulation involves using a quantum computer to model and simulate the behavior of 

complex quantum systems, such as molecules, materials, and chemical reactions (Georgescu et 

al., 2013). Classical computers struggle to simulate these systems accurately due to the 

exponential growth of computational complexity with the size of the (Aspuru-Guzik & Walther, 

2012). 

Quantum computers, on the other hand, can leverage their inherent quantum properties to 

efficiently simulate quantum systems (Cirac & Zoller, 2012). By mapping the quantum state of 

the system being simulated onto the qubits of a quantum computer, researchers can study the 

properties and dynamics of these systems with unprecedented accuracy and efficiency (Lloyd, 

1996). 

Quantum simulation has the potential to accelerate drug discovery, materials science, and 

the development of new technologies (Cao et al., 2019). For example, quantum computers could 

be used to simulate the behavior of complex molecules, enabling the design of more effective 

drugs and materials with tailored properties (B. Bauer et al., 2020). Quantum simulation could 

also help optimize chemical processes, leading to more efficient and sustainable manufacturing 

practices (Aspuru-Guzik & Walther, 2012). 

5.3.2 Optimization and Machine Learning 

Quantum computers can also be applied to optimization problems and machine learning 

tasks. Optimization problems involve finding the best solution from a set of possible solutions, 

subject to certain constraints (Suchara et al., 2014). Many real-world problems, such as supply 



70 

chain optimization, portfolio optimization, and route planning, can be formulated as optimization 

problems (Bharti et al., 2021). 

Quantum algorithms, such as the Quantum Approximate Optimization Algorithm 

(QAOA) (Suchara et al., 2014) and the Variational Quantum Eigensolver (VQE) (Leymann & 

Barzen, 2020), have been developed to tackle optimization problems on quantum computers. 

These algorithms leverage the ability of quantum computers to explore vast solution spaces 

simultaneously, potentially leading to faster and more efficient optimization compared to 

classical methods (Bharti et al., 2021). 

In the field of machine learning, quantum computers can be used to develop quantum-

enhanced machine learning algorithms (Biamonte et al., 2017). Quantum machine learning 

algorithms, such as quantum support vector machines and quantum neural networks, can 

potentially offer speedups and improved performance compared to their classical counterparts 

(Havlíček et al., 2019). Quantum computers could also be used for feature extraction, 

dimensionality reduction, and the training of large-scale machine learning models (Biamonte et 

al., 2017). 

5.3.3 Scientific Computing and Modeling 

Quantum computers have the potential to revolutionize scientific computing and 

modeling across various domains, including physics, chemistry, and biology (Cao et al., 2019). 

Quantum algorithms can be used to solve complex scientific problems, such as simulating the 

behavior of subatomic particles, modeling the folding of proteins, and studying the properties of 

novel materials (B. Bauer et al., 2020). 

For example, quantum computers could be used to simulate the behavior of complex 

quantum many-body systems, such as superconductors and quantum magnets (Lloyd, 1996). 
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These simulations could lead to a better understanding of the fundamental properties of matter 

and the discovery of new materials with exotic properties (Georgescu et al., 2013). 

In the field of computational biology, quantum computers could be used to model the 

folding and dynamics of proteins, which is essential for understanding their function and 

designing new drugs (Cao et al., 2019). Quantum algorithms could also be applied to the analysis 

of large-scale genomic data, potentially leading to new insights into genetic diseases and 

personalized medicine (Biamonte et al., 2017). 

5.3.4 Challenges and Future Directions 

While the potential applications of quantum computers beyond cryptography are vast and 

exciting, there are still significant challenges to overcome (Preskill, 2018). One of the main 

challenges is the development of robust and scalable quantum hardware (Leymann & Barzen, 

2020). Current quantum computers are still limited in terms of the number of qubits, 

connectivity, and error rates, which restrict the size and complexity of the problems that can be 

solved (Bharti et al., 2021). 

Another challenge is the development of efficient and reliable quantum algorithms for 

specific applications (Preskill, 2018). Designing quantum algorithms that can effectively 

leverage the capabilities of quantum computers while being resilient to noise and errors is an 

active area of research (Bharti et al., 2021). 

The integration of quantum computers with classical computing infrastructure and the 

development of quantum software and programming tools are also important considerations 

(Leymann & Barzen, 2020). Establishing standard interfaces, libraries, and development 

environments for quantum computing will be crucial for facilitating the adoption and use of 

quantum computers across different domains (Preskill, 2018). 
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Despite these challenges, the future of quantum computing beyond cryptography is 

promising. Ongoing research and development efforts aim to address the limitations of current 

quantum hardware, improve the efficiency and reliability of quantum algorithms, and explore 

new applications of quantum computing across various fields (Bharti et al., 2021). 

As quantum computers continue to evolve and mature, their impact on scientific 

discovery, industrial optimization, and technological innovation is expected to grow (Preskill, 

2018). The potential of quantum computers to solve complex problems and provide new insights 

into the fundamental workings of nature makes them a transformative technology with far-

reaching implications (Georgescu et al., 2013). 
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CHAPTER VI: CONCLUSION 

To sum up, the experimental research and comparative examination outlined in this thesis 

illustrate the possible influence of quantum computing on cryptography and cybersecurity. The 

outcomes show the significance of creating and implementing quantum-resistant cryptography to 

protect our digital infrastructure in the long run. 

However, beyond the realm of cryptography, quantum computers can reshape science 

and society. In a world built on the understanding of how nature works, the potential solutions 

they promise to some of the hardest problems of science, from disorders to fundamental 

particles, are breathtakingly exciting. Even if none of these promises are ever fully kept, the 

power and potential could be transformative, as enabling of other scientific tools such as 

telescopes, or another great leap in computation like the development of Turing's Universal 

Machine in 1936. 

As we confront the difficulties and advantages posed by quantum computing, it is 

imperative to undertake a comprehensive strategy that consists of the security and general hope 

of this transformative innovation. Uninterrupted examination and energy to improve quantum 

algorithms, quantum machines, and quantum applications will be paramount to exploit fully 

quantum computers in various segments. 

Additionally, it will be crucial to promote cooperation and the exchange of insights 

within the scientific community, amongst shareholders in the industry, as well as individuals in 

policy-making roles, for the purpose of ensuring that the responsible advancement and 

implementation of quantum computer technologies is brought to fruition. Formulating and 

setting up targets, regulations, as well as methods that measure up to the highest standards and 



74 

practices are bound to encourage the principled and secure trade of quantum computers in 

multitudinous domains. 

The thesis demonstrates an experimental analysis that contributes to the increasing 

understanding of how quantum computing changes cryptology and cybersecurity. This study 

provides not just a robust starting point but also a clear direction for future research development 

on encryption protocols that are resistant to quantum attacks.  
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