Bighead carp (Hypophthalmichthys nobilis) are an invasive, voracious, highly fecund species threatening the ecological integrity of the Great Lakes. This agent-based model and analysis explore bighead carp behavior in response to acoustic deterrence in an effort to discover properties that increase likelihood of deterrence system failure. Results indicate the most significant (p < 0.05) influences on barrier failure are the quantity of detritus and plankton behind the barrier, total number of bighead carp successfully deterred by the barrier, and number of native fishes freely moving throughout the simulation. Quantity of resources behind the barrier influence bighead carp to penetrate when populations are resource deprived. When native fish populations are low, an accumulation of phytoplankton can occur, increasing the likelihood of an algal bloom occurrence. Findings of this simulation suggest successful implementation with proper maintenance of an acoustic deterrence system has potential of abating the threat of bighead carp on ecological integrity of the Great Lakes.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.