Date of Award

9-9-2014

Document Type

Thesis and Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Educational Administration and Foundations: Educational Administration

First Advisor

Zeng Lin

Second Advisor

Mohamed Nur-Awaleh

Abstract

Institutions of higher education can benefit from using predictive modeling and data mining techniques to enhance capital and fundraising campaigns to yield higher levels of financial contributions. The purpose of this study was to enhance the sophistication of alumni fundraising by using predictive modeling and data mining techniques to address: (a) What factors are most likely to predict the likelihood of alumni making a financial contribution, and (b) What factors are most significant in predicting the amount of money alumni will contribute. Among the 17 variables used by this study those of significance for predicting the likelihood to give included: distance from alma mater, event attendance, volunteer status, degree year, and life stage. Additionally, the linear regression model predicting the amount of a first time gift accurately predicted over 50% of individual giving at the lowest of three donation levels.

Comments

Imported from ProQuest WALCOTT_ilstu_0092E_10356.pdf

Page Count

145

Share

COinS