Increased Expression of Saccharomyces Cerevisiae Translation Elongation Factor 1α Bypasses the Lethality of a Tef5 Null Allele Encoding Elongation Factor 1β

Document Type


Publication Title


Publication Date



Translation elongation factor 1β (EF-1β) catalyzes the exchange of bound GDP for GTP on EF-1α. The lethality of a null allele of the TEF5 gene encoding EF-1β in Saccharomyces cerevisiae was suppressed by extra copies of the TEF2 gene encoding EF-1α. The strains with tef5::TRP1 suppressed by extra copies of TEF2 were slow growing, cold sensitive, hypersensitive to inhibitors of translation elongation and showed increased phenotypic suppression of +1 frameshift and UAG nonsense mutations. Nine dominant mutant alleles of TEF2 that cause increased suppression of frameshift mutations also suppressed the lethality of tef5::TRP1. Most of the strains in which tef5::TRP1 is suppressed by dominant mutant alleles of TEF2 grew more slowly and were more antibiotic sensitive than strains with tef5::TRP1 suppressed by wild-type TEF2. Two alleles, TEF2-4 and TEF2-10, interact with tef5::TRP1 to produce strains that showed doubling times similar to tef5::TRP1 strains containing extra copies of wild-type TEF2. These strains were less cold sensitive, drug sensitive and correspondingly less efficient suppressors of +1 frameshift mutations. These phenotypes indicate that translation and cell growth are highly sensitive to changes in EF-1α and EF-1β activity.


This article was originally published as Kinzy, T.G. and Woolford, J.L.(1995) Increased Expression of Saccharomyces cerevisiae Translation Elongation Factor 1ï¡ Bypasses the Lethality of a Null Allele Encoding EF-1ï¢, Genetics 141, 481-489. PMID: 8647386