Document Type


Publication Date



We investigate the electron-positron pair creation process in a supercritical static electric field in the presence of a static magnetic field that is perpendicular. If both fields vary spatially in one direction the dynamics can be reduced to a set of one-dimensional systems. Using a generalized computational quantum field theoretical procedure, we calculate the time dependence of the spatial density for the created electrons. In the presence of the magnetic field, a significant amount of suppression of pair creation is observed in the simulations and confirmed by an analytical analysis for the limits of short-range fields and long interaction times. This suppression might be interpreted in terms of Pauli blocking by the electron during its return to the creation region as it performs a cyclotronlike motion in the magnetic field.


Originally published in Physical Review A by the American Physical Society.