Loading...

Media is loading
 

Participant Information

Nick Wintz, Lindenwood UniversityFollow

Type of Presentation

Oral Presentation

Location

General

Comments

Abstract. We demonstrate the existence and uniqueness of solutions to a bilinear state system with locally essentially bounded coefficients on an unbounded time scale. We obtain a Volterra series representation for these solutions which is norm convergent and uniformly convergent on compact subsets of the time scale. We show the associated state transition matrix has a similarly convergent Peano-Baker series representation and identify a necessary and sufficient condition for its invertibility. Finally, we offer numerical applications for dynamic bilinear systems - a frequency modulated signal model and a two-compartment cancer chemotherapy model.

Share

COinS
 

Bilinear State Systems on an Unbounded Time Scale

General