Graduation Term

2021

Degree Name

Master of Science (MS)

Department

Department of Mathematics

Committee Chair

Olcay Akman

Abstract

The abundance of type and quantity of available data in the healthcare field has led many to utilize machine learning approaches to keep up with this influx of data. Data pertaining to COVID-19 is an area of recent interest. The widespread influence of the virus across the United States creates an obvious need to identify groups of individuals that are at an increased risk of mortality from the virus. We propose a so-called clustered random forest approach to predict COVID-19 patient mortality. We use this approach to examine the hidden heterogeneity of patient frailty by examining demographic information for COVID-19 patients. We find that our clustered random forest approach attains predictive performance comparable to other published methods. We also find that follow-up analysis with neural network modeling and k-means clustering provide insight into the type and magnitude of mortality risks associated with COVID-19.

Access Type

Thesis-Open Access

DOI

https://doi.org/10.30707/ETD2021.20220215070316631470.999996

Share

COinS