Document Type

Article

Publication Date

7-2012

Keywords

daylength, life history, phenotypic plasticity, survival, GRASSHOPPER ROMALEA-MICROPTERA, TREE-HOLE MOSQUITO, WEST-NILE-VIRUS, LIFE-HISTORY, GEOGRAPHIC-VARIATION, AEGYPTI DIPTERA, BODY-SIZE, IMMUNE, FUNCTION, COMPETITION, PLASTICITY, Entomology, Veterinary Sciences

Abstract

The Asian tiger mosquito, Aedes albopictus (Skuse), is perhaps the most successful invasive mosquito species in contemporary history. In the United States, Ae. albopictus has spread from its introduction point in southern Texas to as far north as New Jersey (i.e., a span of approximate to 14 degrees latitude). This species experiences seasonal constraints in activity because of cold temperatures in winter in the northern United States, but is active year-round in the south. We performed a laboratory experiment to examine how life-history traits of Ae. albopictus from four populations (New Jersey [39.4 degrees N], Virginia [38.6 degrees N], North Carolina [35.8 degrees N], Florida [27.6 degrees N]) responded to photoperiod conditions that mimic approaching winter in the north (short static daylength, short diminishing daylength) or relatively benign summer conditions in the south (long daylength), at low and high larval densities. Individuals from northern locations were predicted to exhibit reduced development times and to emerge smaller as adults under short daylength, but be larger and take longer to develop under long daylength. Life-history traits of southern populations were predicted to show less plasticity in response to daylength because of low probability of seasonal mortality in those areas. Males and females responded strongly to photoperiod regardless of geographic location, being generally larger but taking longer to develop under the long daylength compared with short day lengths; adults of both sexes were smaller when reared at low larval densities. Adults also differed in mass and development time among locations, although this effect was independent of density and photoperiod in females but interacted with density in males. Differences between male and female mass and development times was greater in the long photoperiod suggesting differences between the sexes in their reaction to different photoperiods. This work suggests that Ae. albopictus exhibits sex-specific phenotypic plasticity in life-history traits matching variation in important environmental variables.

Comments

This article is the copyright property of the Entomological Society of America and may not be used for any commercial or other private purpose without specific written permission of the Entomological Society of America.

Share

COinS