Document Type
Article
Publication Title
Journal of Big Data
Publication Date
2020
Keywords
Transfer learning, Multi-label classification, Sentiment analysis, Natural language processing, Deep learning
Abstract
Sentiment analysis is recognized as one of the most important sub-areas in Natural Language Processing (NLP) research, where understanding implicit or explicit sentiments expressed in social media contents is valuable to customers, business owners, and other stakeholders. Researchers have recognized that the generic sentiments extracted from the textual contents are inadequate, thus, Aspect Based Sentiment Analysis (ABSA) was coined to capture aspect sentiments expressed toward specific review aspects. Existing ABSA methods not only treat the analytical problem as single-label classification that requires a fairly large amount of labelled data for model training purposes, but also underestimate the entity aspects that are independent of certain sentiments. In this study, we propose a transfer learning based approach tackling the aforementioned shortcomings of existing ABSA methods. Firstly, the proposed approach extends the ABSA methods with multi-label classification capabilities. Secondly, we propose an advanced sentiment analysis method, namely Aspect Enhanced Sentiment Analysis (AESA) to classify text into sentiment classes with consideration of the entity aspects. Thirdly, we extend two state-of-the-art transfer learning models as the analytical vehicles of multi-label ABSA and AESA tasks. We design an experiment that includes data from different domains to extensively evaluate the proposed approach. The empirical results undoubtedly exhibit that the proposed approach outperform all the baseline approaches.
DOI
10.1186/s40537-019-0278-0
Recommended Citation
Tao, Jie and Fang, Xing, "Toward multi-label sentiment analysis: a transfer learning based approach" (2020). Faculty Publications - Information Technology. 3.
https://ir.library.illinoisstate.edu/fpitech/3
Comments
First published in Journal of Big Data volume 7, Article number: 1 (2020). https://doi.org/10.1186/s40537-019-0278-0.
This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativeco mmons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.